Fast and simple constant-time hashing to the BLS12-381 elliptic curve

(and other curves, too!)

Riad S. Wahby, Dan Boneh

Stanford

August 26th, 2019

Why do we need hashes to elliptic curves?

Why do we need hashes to elliptic curves?

• Our initial motivation: BLS signatures [BLS01]

Why do we need hashes to elliptic curves?

- Our initial motivation: BLS signatures [BLS01]
- Also: VRFs, OPRFs, PAKEs, IBE, ...

Why do we need hashes to elliptic curves?

- Our initial motivation: BLS signatures [BLS01]
- Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?

Why do we need hashes to elliptic curves?

- Our initial motivation: BLS signatures [BLS01]
- Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?

• Side channels (e.g., Dragonblood [VR19])

Why do we need hashes to elliptic curves?

- Our initial motivation: BLS signatures [BLS01]
- Also: VRFs, fixed-modulus arithmetic only
- Why simple and constant time?
 - Side channels (e.g., Dragonblood [VR19])

Why do we need hashes to elliptic curves?

- Our initial motivation: BLS signatures [BLS01]
- Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?

- Side channels (e.g., Dragonblood [VR19])
- Embedded systems often have fixed-modulus hardware acceleration but *slow* generic bigint

Why do we need hashes to elliptic curves?

- Our initial motivation: BLS signatures [BLS01]
- Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?

- Side channels (e.g., Dragonblood [VR19])
- Embedded systems often have fixed-modulus hardware acceleration but *slow* generic bigint

Why the BLS12-381 pairing-friendly elliptic curve?

• Widely used curve for \approx 120-bit security level

Why do we need hashes to elliptic curves?

- Our initial motivation: BLS signatures [BLS01]
- Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?

- Side channels (e.g., Dragonblood [VR19])
- Embedded systems often have fixed-modulus hardware acceleration but *slow* generic bigint

Why the BLS12-381 pairing-friendly elliptic curve?

Widely used curve for ≈120-bit security level
 Image: ZK proofs, signatures, IBE, ABE, ...

1. An "indirect" map to pairing-friendly curves that sidesteps limitations of existing maps

- 1. An "indirect" map to pairing-friendly curves that sidesteps limitations of existing maps
- 2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation
 ✓ On par with the fastest existing maps

- 1. An "indirect" map to pairing-friendly curves that sidesteps limitations of existing maps
- 2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation
 ✓ On par with the fastest existing maps
 ✓ Fast impls are simple and constant time

- 1. An "indirect" map to pairing-friendly curves that sidesteps limitations of existing maps
- 2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation
 ✓ On par with the fastest existing maps
 ✓ Fast impls are simple and constant time
 ✓ Applies to essentially any prime-field curve

- 1. An "indirect" map to pairing-friendly curves that sidesteps limitations of existing maps
- 2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation
 ✓ On par with the fastest existing maps
 ✓ Fast impls are simple and constant time
 ✓ Applies to essentially any prime-field curve
- 3. Impl and eval of 34 hash variants for BLS12-381

- 1. An "indirect" map to pairing-friendly curves that sidesteps limitations of existing maps
- 2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation
 ✓ On par with the fastest existing maps
 ✓ Fast impls are simple and constant time
 ✓ Applies to essentially any prime-field curve
- 3. Impl and eval of 34 hash variants for BLS12-381
 - ✓ 1.3−2× faster than prior constant-time hashes, ≤ 9% slower than *non*-CT deterministic hashes

- 1. An "indirect" map to pairing-friendly curves that sidesteps limitations of existing maps
- 2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation
 ✓ On par with the fastest existing maps
 ✓ Fast impls are simple and constant time
 ✓ Applies to essentially any prime-field curve
- 3. Impl and eval of 34 hash variants for BLS12-381
 ✓ 1.3-2× faster than prior constant-time hashes, ≤ 9% slower than *non*-CT deterministic hashes
 Impl Open-source impls in C, Rust, Python, ...

1. Hash functions to elliptic curves

2. Optimizing the map of [BCIMRT10]

3. Evaluation results

Notation

\mathbb{F}_p is the finite field of integers mod a prime p

Notation

\mathbb{F}_p is the finite field of integers mod a prime p

 $H_p: \{0,1\}^\star \to \mathbb{F}_p$ modeled as a random oracle

 \mathbb{F}_p is the finite field of integers mod a prime p

 $H_p: \{0,1\}^\star o \mathbb{F}_p$ modeled as a random oracle

 $E(\mathbb{F}_p)$ is the elliptic curve group with identity \mathcal{O} and points $\{(x, y) : x, y \in \mathbb{F}_p, y^2 = x^3 + ax + b\}$ real multiplicative notation \mathbb{F}_p is the finite field of integers mod a prime p

 $H_p: \{0,1\}^\star o \mathbb{F}_p$ modeled as a random oracle

 $E(\mathbb{F}_p)$ is the elliptic curve group with identity \mathcal{O} and points $\{(x, y) : x, y \in \mathbb{F}_p, y^2 = x^3 + ax + b\}$ real multiplicative notation

 $\mathbb{G} \subseteq E(\mathbb{F}_p)$ is a subgroup of prime order q. $\#E(\mathbb{F}_p) = hq$; h is the *cofactor*.

```
HashToCurve<sub>H&C</sub>(msg):
      ctr \leftarrow 0
      v \leftarrow \bot
      while y = \bot:
             x \leftarrow H_p(\operatorname{ctr} || \operatorname{msg})
             \mathsf{ctr} \leftarrow \mathsf{ctr} + 1
             vSa \leftarrow x^3 + ax + b
             y \leftarrow \operatorname{sqrt}(ySq) // \perp if ySq is non-square
      P \leftarrow (x, y)
      return P<sup>h</sup>
                                              // map to \mathbb{G} via cofactor mul
```

```
HashToCurve<sub>H&C</sub>(msg):
      ctr \leftarrow 0
     y \leftarrow \bot
      while y = \bot:
            x \leftarrow H_p(\operatorname{ctr} || \operatorname{msg})
            ctr \leftarrow ctr + 1
            vSa \leftarrow x^3 + ax + b
            y \leftarrow \operatorname{sqrt}(ySq) // \perp if ySq is non-square
      P \leftarrow (x, y)
      return P<sup>h</sup>
                                           // map to \mathbb{G} via cofactor mul
```

$$\begin{array}{ll} \mathsf{HashToCurve_{H\&C}(msg):} \\ \mathsf{ctr} \leftarrow 0 \\ y \leftarrow \bot \\ \mathsf{while} \ y = \bot: \\ x \leftarrow H_p(\mathsf{ctr} \mid\mid \mathsf{msg}) \\ \mathsf{ctr} \leftarrow \mathsf{ctr} + 1 \\ ySq \leftarrow x^3 + ax + b \\ y \leftarrow \mathsf{sqrt}(ySq) \quad // \bot \ \mathsf{if} \ ySq \ \mathsf{is non-square} \\ P \leftarrow (x, y) \\ \mathsf{return} \ P^h \qquad // \ \mathsf{map to} \ \mathbb{G} \ \mathsf{via cofactor mul} \end{array}$$

 $\hbox{\rm res} \ E(\mathbb{F}_p) = \{(x,y) : x, y \in \mathbb{F}_p, y^2 = x^3 + ax + b\}$

$$\begin{array}{ll} \mathsf{HashToCurve_{H\&C}(msg):} \\ \mathsf{ctr} \leftarrow 0 \\ y \leftarrow \bot \\ \mathsf{while} \ y = \bot: \\ x \leftarrow H_p(\mathsf{ctr} \mid\mid \mathsf{msg}) \\ \mathsf{ctr} \leftarrow \mathsf{ctr} + 1 \\ ySq \leftarrow x^3 + ax + b \\ y \leftarrow \mathsf{sqrt}(ySq) \ // \bot \ \mathsf{if} \ ySq \ \mathsf{is non-square} \\ P \leftarrow (x, y) \\ \mathsf{return} \ P^h \ // \ \mathsf{map to} \ \mathbb{G} \ \mathsf{via cofactor mul} \end{array}$$

$$\begin{array}{c} \mathsf{HashToCurve_{H\&C}(msg):} \\ \mathsf{ctr} \leftarrow 0 \\ y \leftarrow \bot \\ \mathsf{while} \ y = \bot: \\ x \leftarrow H_p(\mathsf{ctr} \mid\mid \mathsf{msg}) \\ \mathsf{ctr} \leftarrow \mathsf{ctr} + 1 \\ ySq \leftarrow x^3 + ax + b \\ y \leftarrow \mathsf{sqrt}(ySq) \ // \bot \ \mathsf{if} \ ySq \ \mathsf{is non-square} \\ P \leftarrow (x, y) \\ \mathsf{return} \ P^h \ // \ \mathsf{map to} \ \mathbb{G} \ \mathsf{via cofactor mul} \end{array}$$

Not constant time; "bad" inputs are easy to find.

$$\begin{array}{c} \mathsf{HashToCurve_{H\&C}(msg):} \\ \mathsf{ctr} \leftarrow 0 \\ y \leftarrow \bot \\ \mathsf{while} \ y = \bot: \\ x \leftarrow H_p(\mathsf{ctr} \mid\mid \mathsf{msg}) \\ \mathsf{ctr} \leftarrow \mathsf{ctr} + 1 \\ ySq \leftarrow x^3 + \mathsf{ax} + \mathsf{b} \\ y \leftarrow \mathsf{sqrt}(ySq) \ // \bot \ \mathsf{if} \ ySq \ \mathsf{is non-square} \\ P \leftarrow (x, y) \\ \mathsf{return} \ P^h \ // \ \mathsf{map to} \ \mathbb{G} \ \mathsf{via cofactor mult} \end{array}$$

Not constant time; "bad" inputs are easy to find. Loop a fixed number of times?

Not constant time; "bad" inputs are easy to find.
X Loop a fixed number of times?
Slow; well-meaning "optimization" breaks CT.

$$M: \mathbb{F}_p
ightarrow E(\mathbb{F}_p)$$
, where $E: y^2 = x^3 + ax + b$ and $p > 5$:

 $M: \mathbb{F}_p \to E(\mathbb{F}_p)$, where $E: y^2 = x^3 + ax + b$ and p > 5: Restrictions Cost Map M[BF01] $p \equiv 2 \mod 3, a = 0$

1 exp

Map M	Restrictions	Cost
[BF01]	$p \equiv 2 \mod 3, a = 0$	1 exp
[SW06]	none	3 exp

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3, a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp

Мар <i>М</i>		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3, a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[lcart09]	$p \equiv 2 \mod 3$	1 exp

Мар <i>М</i>		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3, a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[lcart09]	$p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$p \equiv 3 \mod 4$, $ab \neq 0$	2 exp

Мар <i>М</i>		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3, a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[lcart09]	$p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	$b eq$ 0, 2 $ \#E(\mathbb{F}_p)$	1 exp

 $M: \mathbb{F}_p \to E(\mathbb{F}_p)$, where $E: y^2 = x^3 + ax + b$ and p > 5:

Мар <i>М</i>		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3, a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[lcart09]	$p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	$b eq$ 0, 2 $\#E(\mathbb{F}_p)$	1 exp

 $M: \mathbb{F}_p \to E(\mathbb{F}_p)$, where $E: y^2 = x^3 + ax + b$ and p > 5:

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3, a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[lcart09]	$p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	$b eq$ 0, 2 $ $ $\#E(\mathbb{F}_p)$	1 exp
This work		ab eq 0	1 exp
		none	1 + exp

 $M: \mathbb{F}_p \to E(\mathbb{F}_p)$, where $E: y^2 = x^3 + ax + b$ and p > 5:

Мар <i>М</i>		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3$, $a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[lcart09]	$p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	$b eq 0,2 \#E(\mathbb{F}_p)$	1 exp
This work		ab eq 0	1 exp
		none	1+ exp

BLS12-381: $p \equiv 1 \mod 3$, a = 0, $2 \nmid \# E(\mathbb{F}_p)$

 $M: \mathbb{F}_p \to E(\mathbb{F}_p)$, where $E: y^2 = x^3 + ax + b$ and p > 5:

Map M		Restrictions	Cost
	[BF01]	$\nearrow p \equiv 2 \mod 3$, $a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[lcart09]	$\nearrow p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	$b eq 0,2 \#E(\mathbb{F}_p)$	1 exp
This work		ab eq 0	1 exp
		none	1+ exp

BLS12-381: $p \equiv 1 \mod 3$, a = 0, $2 \nmid \# E(\mathbb{F}_p)$

 $M: \mathbb{F}_p \to E(\mathbb{F}_p)$, where $E: y^2 = x^3 + ax + b$ and p > 5:

Map M		Restrictions	Cost
	[BF01]	$\nearrow p \equiv 2 \mod 3$, $a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$\checkmark p \equiv 3 \mod 4, ab \neq 0$	3 exp
	[lcart09]	$\nearrow p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$\nearrow p \equiv 3 \mod 4, ab \neq 0$	2 exp
Elligator	[BHKL13]	$b eq 0,2 \#E(\mathbb{F}_p)$	1 exp
This work		ab eq 0	1 exp
		none	1+ exp

BLS12-381: $p \equiv 1 \mod 3$, a = 0, $2 \nmid \# E(\mathbb{F}_p)$

 $M: \mathbb{F}_p \to E(\mathbb{F}_p)$, where $E: y^2 = x^3 + ax + b$ and p > 5:

Мар <i>М</i>		Restrictions	Cost
	[BF01]	$\nearrow p \equiv 2 \mod 3, a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$x \ p \equiv 3 \bmod 4, ab \neq 0$	3 exp
	[lcart09]	$\nearrow p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$\nearrow p \equiv 3 \mod 4, ab \neq 0$	2 exp
Elligator	[BHKL13]	$ ightarrow b eq 0, 2 \mid \#E(\mathbb{F}_p) $	1 exp
This work		ab eq 0	1 exp
		none	1+ exp

BLS12-381: $p \equiv 1 \mod 3$, a = 0, $2 \nmid \# E(\mathbb{F}_p)$

 $M: \mathbb{F}_p \to E(\mathbb{F}_p)$, where $E: y^2 = x^3 + ax + b$ and p > 5:

Мар <i>М</i>		Restrictions	Cost
	[BF01]	$\nearrow p \equiv 2 \mod 3, a = 0$	1 exp
	[SW06]	🗸 none	3 exp
SWU	[Ulas07]	$x \ p \equiv 3 \bmod 4, ab \neq 0$	3 exp
	[lcart09]	$\nearrow p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$\checkmark p \equiv 3 \mod 4, ab \neq 0$	2 exp
Elligator	[BHKL13]	$ ightarrow b eq 0, 2 \mid \#E(\mathbb{F}_p) $	1 exp
This work		ab eq 0	1 exp
		none	1+ exp

BLS12-381: $p \equiv 1 \mod 3$, a = 0, $2 \nmid \# E(\mathbb{F}_p)$

 $M: \mathbb{F}_p \to E(\mathbb{F}_p)$, where $E: y^2 = x^3 + ax + b$ and p > 5:

Мар <i>М</i>		Restrictions	Cost
	[BF01]	$\nearrow p \equiv 2 \mod 3$, $a = 0$	1 exp
	[SW06]	✓ none	3 exp
SWU	[Ulas07]	$\nearrow p \equiv 3 \mod 4, ab \neq 0$	3 exp
	[lcart09]	$\nearrow p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	\nearrow $p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	$\checkmark b \neq 0, 2 \mid \#E(\mathbb{F}_p)$	1 exp
This work		earrow ab eq 0	1 exp
		✓ none	1+ exp

BLS12-381: $p \equiv 1 \mod 3$, a = 0, $2 \nmid \# E(\mathbb{F}_p)$

Compose H_p and M in a natural way:

 $\mathsf{HashToCurve}_{\mathsf{NU}}(\mathsf{msg}):$ $t \leftarrow H_p(\mathsf{msg})$ $P \leftarrow M(t)$ return P^h

Compose H_p and M in a natural way:

 $\mathsf{HashToCurve}_{\mathsf{NU}}(\mathsf{msg}):$ $t \leftarrow H_p(\mathsf{msg})$ $P \leftarrow M(t)$ return P^h

Compose H_p and M in a natural way:

 $\mathsf{HashToCurve}_{\mathsf{NU}}(\mathsf{msg}):$ $t \leftarrow H_{\rho}(\mathsf{msg})$ $P \leftarrow M(t)$ return P^h

Compose H_p and M in a natural way:

 $\mathsf{HashToCurve}_{\mathsf{NU}}(\mathsf{msg}):$ $t \leftarrow H_p(\mathsf{msg})$ $P \leftarrow M(t)$ return P^h

Compose H_p and M in a natural way:

HashToCurve_{NU}(msg) : $t \leftarrow H_p(msg)$ // $\{0, 1\}^* \rightarrow \mathbb{F}_p$ $P \leftarrow M(t)$ // $\mathbb{F}_p \rightarrow E(\mathbb{F}_p)$ return P^h // $E(\mathbb{F}_p) \rightarrow \mathbb{G}$

Possible issue: *M* is not a bijection: $#E(\mathbb{F}_p) \neq p$ \blacksquare output distribution is nonuniform

Compose H_p and M in a natural way:

 $\begin{array}{ll} \mathsf{HashToCurve}_{\mathsf{NU}}(\mathsf{msg}) : \\ t \leftarrow H_p(\mathsf{msg}) & // \{0,1\}^* \to \mathbb{F}_p \\ P \leftarrow M(t) & // \mathbb{F}_p \to E(\mathbb{F}_p) \\ \mathsf{return} \ P^h & // \ E(\mathbb{F}_p) \to \mathbb{G} \end{array}$

Possible issue: *M* is not a bijection: $#E(\mathbb{F}_p) \neq p$ \blacksquare output distribution is nonuniform

This could be OK—but what if we need uniformity?

Uniform hashing from deterministic maps

For uniformity [BCIMRT10,FFSTV13]:

 $\begin{array}{l} \mathsf{HashToCurve(msg)}:\\ P_1 \leftarrow \mathcal{M}(\mathcal{H}_p(\mathsf{0} \mid\mid \mathsf{msg}))\\ P_2 \leftarrow \mathcal{M}(\mathcal{H}_p(\mathsf{1} \mid\mid \mathsf{msg}))\\ P \leftarrow P_1 \cdot P_2\\ \mathsf{return} \ \mathcal{P}^h \end{array}$

Uniform hashing from deterministic maps

For uniformity [BCIMRT10,FFSTV13]:

HashToCurve(msg) : $P_1 \leftarrow M(H_p(0 || msg))$ $P_2 \leftarrow M(H_p(1 || msg))$ $P \leftarrow P_1 \cdot P_2$ return P^h

M needs to be *well distributed*: "not too lumpy"
 ✓ All of the *M* we've seen are well distributed.

Uniform hashing from deterministic maps

For uniformity [BCIMRT10,FFSTV13]:

HashToCurve(msg) : $P_1 \leftarrow M(H_p(0 || msg))$ $P_2 \leftarrow M(H_p(1 || msg))$ $P \leftarrow P_1 \cdot P_2$ return P^h

Image: M needs to be *well distributed*: "not too lumpy"
 ✓ All of the M we've seen are well distributed.
 Image: HashToCurve is *indifferentiable* from RO [MRH05]

1. Hash functions to elliptic curves

2. Optimizing the map of [BCIMRT10]

3. Evaluation results

$$E: y^2 = f(x) = x^3 + ax + b$$
, $ab \neq 0$.

Idea: pick x s.t. $f(ux) = u^3 f(x)$. For u non-square $\in \mathbb{F}_p$, f(x) or f(ux) is square.

$$E: y^2 = f(x) = x^3 + ax + b, ab \neq 0.$$

Idea: pick x s.t. $f(ux) = u^3 f(x)$. For u non-square $\in \mathbb{F}_p$, f(x) or f(ux) is square.

$$u^3x^3+aux+b=u^3(x^3+ax+b)$$

 $x=-rac{b}{a}\left(1+rac{1}{u^2+u}
ight)$

$$E: y^2 = f(x) = x^3 + ax + b, ab \neq 0.$$

Idea: pick x s.t. $f(ux) = u^3 f(x)$. For u non-square $\in \mathbb{F}_p$, f(x) or f(ux) is square.

$$u^{3}x^{3} + aux + b = u^{3}(x^{3} + ax + b)$$

$$\therefore \qquad x = -\frac{b}{a}\left(1 + \frac{1}{u^{2} + u}\right)$$

If $p \equiv 3 \mod 4$, $u = -t^2$ is non-square

$$E: y^2 = f(x) = x^3 + ax + b, ab \neq 0.$$

Idea: pick x s.t. $f(ux) = u^3 f(x)$. For u non-square $\in \mathbb{F}_p$, f(x) or f(ux) is square.

$$u^{3}x^{3} + aux + b = u^{3}(x^{3} + ax + b)$$

 $x = -\frac{b}{a}\left(1 + \frac{1}{u^{2} + u}\right)$

If $p \equiv 3 \mod 4$, $u = -t^2$ is non-square, so:

$$X_0(t) riangleq -rac{b}{a}\left(1+rac{1}{t^4-t^2}
ight) \qquad X_1(t) riangleq -t^2 X_0(t)$$

$$\mathsf{S}\text{-}\mathsf{SWU}(t) \triangleq \begin{cases} (X_0(t), \sqrt{f(X_0(t))}) & \text{if } f(X_0(t)) \text{ is square} \\ (X_1(t), \sqrt{f(X_1(t))}) & \text{otherwise} \end{cases}$$

$$\mathsf{S}\text{-}\mathsf{SWU}(t) \triangleq \begin{cases} (X_0(t), \sqrt{f(X_0(t))}) & \text{if } f(X_0(t)) \text{ is square} \\ (X_1(t), \sqrt{f(X_1(t))}) & \text{otherwise} \end{cases}$$

Attempt #1 (assume $p \equiv 3 \mod 4$):

$$\begin{array}{ll} x_0 \leftarrow X_0(t) \\ y_0 \leftarrow f(x_0)^{\frac{p+1}{4}} & // \And \text{ expensive} \\ x_1 \leftarrow -t^2 x_0 & // \text{ a.k.a. } X_1(t) \\ y_1 \leftarrow f(x_1)^{\frac{p+1}{4}} & // \And \text{ expensive} \\ \text{if } y_0^2 = f(x_0) \text{: return } (x_0, y_0) \\ \text{else: return } (x_1, y_1) \end{array}$$

$$\mathsf{S}\text{-}\mathsf{SWU}(t) \triangleq \begin{cases} (X_0(t), \sqrt{f(X_0(t))}) & \text{if } f(X_0(t)) \text{ is square} \\ (X_1(t), \sqrt{f(X_1(t))}) & \text{otherwise} \end{cases}$$

Attempt #1 (assume $p \equiv 3 \mod 4$):

$$\begin{array}{ll} x_0 \leftarrow X_0(t) \\ y_0 \leftarrow f(x_0)^{\frac{p+1}{4}} & // \ \textbf{X} \ \text{expensive} \\ x_1 \leftarrow -t^2 x_0 & // \ \text{a.k.a.} \ X_1(t) \\ y_1 \leftarrow f(x_1)^{\frac{p+1}{4}} & // \ \textbf{X} \ \text{expensive} \\ \text{if} \ y_0^2 = f(x_0) \text{: return } (x_0, y_0) \\ \text{else: return } (x_1, y_1) \end{array}$$

$$\mathsf{S}\text{-}\mathsf{SWU}(t) \triangleq \begin{cases} (X_0(t), \sqrt{f(X_0(t))}) & \text{if } f(X_0(t)) \text{ is square} \\ (X_1(t), \sqrt{f(X_1(t))}) & \text{otherwise} \end{cases}$$

Attempt #1 (assume $p \equiv 3 \mod 4$):

$$\begin{array}{ll} x_0 \leftarrow X_0(t) \\ y_0 \leftarrow f(x_0)^{\frac{p+1}{4}} & // \And \text{ expensive} \\ x_1 \leftarrow -t^2 x_0 & // \text{ a.k.a. } X_1(t) \\ y_1 \leftarrow f(x_1)^{\frac{p+1}{4}} & // \And \text{ expensive} \\ \text{if } y_0^2 = f(x_0) \text{: return } (x_0, y_0) \\ \text{else: return } (x_1, y_1) \end{array}$$

$$\mathsf{S}\text{-}\mathsf{SWU}(t) \triangleq \begin{cases} (X_0(t), \sqrt{f(X_0(t))}) & \text{if } f(X_0(t)) \text{ is square} \\ (X_1(t), \sqrt{f(X_1(t))}) & \text{otherwise} \end{cases}$$

Attempt #1 (assume $p \equiv 3 \mod 4$):

$$\begin{array}{ll} x_0 \leftarrow X_0(t) \\ y_0 \leftarrow f(x_0)^{\frac{p+1}{4}} & // \not x \text{ expensive} \\ x_1 \leftarrow -t^2 x_0 & // \text{ a.k.a. } X_1(t) \\ y_1 \leftarrow f(x_1)^{\frac{p+1}{4}} & // \not x \text{ expensive} \\ \text{if } y_0^2 = f(x_0) \text{: return } (x_0, y_0) \\ \text{else: return } (x_1, y_1) \end{array}$$

Requires two exponentiations! Can we do better?

Recall:
$$f(x_1) = -t^6 f(x_0)$$
. So:
 $f(x_1)^{\frac{p+1}{4}} = (-t^6 f(x_0))^{\frac{p+1}{4}}$

Recall:
$$f(x_1) = -t^6 f(x_0)$$
. So:
 $f(x_1)^{\frac{p+1}{4}} = (-t^6 f(x_0))^{\frac{p+1}{4}}$
 $= t^3 (-f(x_0))^{\frac{p+1}{4}} = t^3 \sqrt{-f(x_0)}$

Recall:
$$f(x_1) = -t^6 f(x_0)$$
. So:
 $f(x_1)^{\frac{p+1}{4}} = (-t^6 f(x_0))^{\frac{p+1}{4}}$
 $= t^3 (-f(x_0))^{\frac{p+1}{4}} = t^3 \sqrt{-f(x_0)}$

Solution We have $f(x_0)^{\frac{p+1}{4}}$. Can we use this?

Recall:
$$f(x_1) = -t^6 f(x_0)$$
. So:
 $f(x_1)^{\frac{p+1}{4}} = (-t^6 f(x_0))^{\frac{p+1}{4}}$
 $= t^3 (-f(x_0))^{\frac{p+1}{4}} = t^3 \sqrt{-f(x_0)}$

We have
$$f(x_0)^{\frac{p+1}{4}}$$
. Can we use this?
 $\left(f(x_0)^{\frac{p+1}{4}}\right)^2 = f(x_0)^{\frac{p+1}{2}} = f(x_0) \cdot f(x_0)^{\frac{p-1}{2}}$

Recall:
$$f(x_1) = -t^6 f(x_0)$$
. So:
 $f(x_1)^{\frac{p+1}{4}} = (-t^6 f(x_0))^{\frac{p+1}{4}}$
 $= t^3 (-f(x_0))^{\frac{p+1}{4}} = t^3 \sqrt{-f(x_0)}$

Solution We have $f(x_0)^{\frac{p+1}{4}}$. Can we use this?

$$\left(f(x_0)^{\frac{p+1}{4}}\right)^2 = f(x_0)^{\frac{p+1}{2}} = f(x_0) \cdot f(x_0)^{\frac{p-1}{2}}$$

Legendre symbol!

Recall:
$$f(x_1) = -t^6 f(x_0)$$
. So:
 $f(x_1)^{\frac{p+1}{4}} = (-t^6 f(x_0))^{\frac{p+1}{4}}$
 $= t^3 (-f(x_0))^{\frac{p+1}{4}} = t^3 \sqrt{-f(x_0)}$

We have
$$f(x_0)^{\frac{p+1}{4}}$$
. Can we use this?
 $\left(f(x_0)^{\frac{p+1}{4}}\right)^2 = f(x_0)^{\frac{p+1}{2}} = f(x_0) \cdot f(x_0)^{\frac{p-1}{2}}$
 $= -f(x_0)$ if $f(x_0)$ is non-square

✓ $f(x_0)^{\frac{p+1}{4}}$ is $\sqrt{-f(x_0)}$ when $f(x_0)$ is non-square!

Evaluating the S-SWU map—faster!

Attempt #2 (assume
$$p \equiv 3 \mod 4$$
):
 $x_0 \leftarrow X_0(t)$
 $y_0 \leftarrow f(x_0)^{(p+1)/4}$ // X expensive
 $x_1 \leftarrow -t^2 x_0$ // a.k.a. $X_1(t)$
 $y_1 \leftarrow t^3 y_0$ // \checkmark cheap!
if $y_0^2 = f(x_0)$: return (x_0, y_0)
else: return (x_1, y_1)

Evaluating the S-SWU map—faster!

Attempt #2 (assume
$$p \equiv 3 \mod 4$$
):
 $x_0 \leftarrow X_0(t)$
 $y_0 \leftarrow f(x_0)^{(p+1)/4}$ // X expensive
 $x_1 \leftarrow -t^2 x_0$ // a.k.a. $X_1(t)$
 $y_1 \leftarrow t^3 y_0$ // V cheap!
if $y_0^2 = f(x_0)$: return (x_0, y_0)
else: return (x_1, y_1)

✓ Prior work [BDLSY12] lets us avoid inversions.

Evaluating the S-SWU map—faster!

Attempt #2 (assume
$$p \equiv 3 \mod 4$$
):
 $x_0 \leftarrow X_0(t)$
 $y_0 \leftarrow f(x_0)^{(p+1)/4}$ // X expensive
 $x_1 \leftarrow -t^2 x_0$ // a.k.a. $X_1(t)$
 $y_1 \leftarrow t^3 y_0$ // V cheap!
if $y_0^2 = f(x_0)$: return (x_0, y_0)
else: return (x_1, y_1)

✓ Prior work [BDLSY12] lets us avoid inversions.
 ✓ Straightforward to generalize to p ≡ 1 mod 4.

Issue: S-SWU still does not work with ab = 0. Rules out pairing-friendly curves [BLS03,BN06,...]

Issue: S-SWU still does not work with ab = 0. Rules out pairing-friendly curves [BLS03,BN06,...]

Idea: map to a curve E' having $ab \neq 0$ and an efficiently-computable homomorphism to E.

Issue: S-SWU still does not work with ab = 0. Rules out pairing-friendly curves [BLS03,BN06,...]

Idea: map to a curve E' having $ab \neq 0$ and an efficiently-computable homomorphism to E.

Specifically: Find $E'(\mathbb{F}_p)$ *d*-isogenous to *E*, *d* small. \blacksquare Defines a degree $\approx d$ rational map $E'(\mathbb{F}_p) \to E(\mathbb{F}_p)$

Issue: S-SWU still does not work with ab = 0. Rules out pairing-friendly curves [BLS03,BN06,...]

Idea: map to a curve E' having $ab \neq 0$ and an efficiently-computable homomorphism to E.

Specifically: Find $E'(\mathbb{F}_p)$ *d*-isogenous to *E*, *d* small. \blacksquare Defines a degree $\approx d$ rational map $E'(\mathbb{F}_p) \to E(\mathbb{F}_p)$

Then: S-SWU to $E'(\mathbb{F}_p)$, isogeny map to $E(\mathbb{F}_p)$. \checkmark Preserves well-distributedness of S-SWU.

1. Hash functions to elliptic curves

2. Optimizing the map of [BCIMRT10]

3. Evaluation results

BLS12-381 defines $\mathbb{G}_1 \subset E_1(\mathbb{F}_p)$ and $\mathbb{G}_2 \subset E_2(\mathbb{F}_{p^2})$.

BLS12-381 defines $\mathbb{G}_1 \subset E_1(\mathbb{F}_p)$ and $\mathbb{G}_2 \subset E_2(\mathbb{F}_{p^2})$.

For \mathbb{G}_1 and \mathbb{G}_2 , we implement:

Maps: hash-and-check; [SW06]; this work Styles: full bigint; field ops only, non-CT and CT Hashes: non-uniform; uniform

In total: 34 hash variants, 3520 lines of C.

BLS12-381 defines $\mathbb{G}_1 \subset E_1(\mathbb{F}_p)$ and $\mathbb{G}_2 \subset E_2(\mathbb{F}_{p^2})$.

For \mathbb{G}_1 and \mathbb{G}_2 , we implement:

Maps: hash-and-check; [SW06]; this work Styles: full bigint; field ops only, non-CT and CT Hashes: non-uniform; uniform

In total: 34 hash variants, 3520 lines of C.

BLS12-381 defines $\mathbb{G}_1 \subset E_1(\mathbb{F}_p)$ and $\mathbb{G}_2 \subset E_2(\mathbb{F}_{p^2})$.

For \mathbb{G}_1 and \mathbb{G}_2 , we implement:

Maps: hash-and-check; [SW06]; this work Styles: full bigint; field ops only, non-CT and CT Hashes: non-uniform; uniform

In total: 34 hash variants, 3520 lines of C.

Setup: Xeon E3-1535M v6 (no hyperthreading or frequency scaling); Linux 5.2; GCC 9.1.0.

BLS12-381 defines $\mathbb{G}_1 \subset E_1(\mathbb{F}_p)$ and $\mathbb{G}_2 \subset E_2(\mathbb{F}_{p^2})$.

For \mathbb{G}_1 and \mathbb{G}_2 , we implement:

Maps: hash-and-check; [SW06]; this work Styles: full bigint; field ops only, non-CT and CT Hashes: non-uniform; uniform

In total: 34 hash variants, 3520 lines of C.

Setup: Xeon E3-1535M v6 (no hyperthreading or frequency scaling); Linux 5.2; GCC 9.1.0.

Method: run each hash 10^6 times; record #cycles.

BLS12-381 \mathbb{G}_1 , uniform hash function

Contributions:

- ✓ Optimizations to the map of [BCIMRT10]
- \checkmark "Indirect" approach to expand applicability
- \checkmark Fast impls are simple and constant time

Contributions:

- ✓ Optimizations to the map of [BCIMRT10]
- \checkmark "Indirect" approach to expand applicability
- \checkmark Fast impls are simple and constant time

Result: hash-to-curve costs 1⁺ exponentiation for essentially any prime-field elliptic curve.

Contributions:

- ✓ Optimizations to the map of [BCIMRT10]
- \checkmark "Indirect" approach to expand applicability
- \checkmark Fast impls are simple and constant time

Result: hash-to-curve costs 1⁺ exponentiation for essentially any prime-field elliptic curve.
IST State of the art for BLS, BN, NIST, secp256k1, and other curves not covered by Elligator or lcart.

Contributions:

- ✓ Optimizations to the map of [BCIMRT10]
- \checkmark "Indirect" approach to expand applicability
- \checkmark Fast impls are simple and constant time

Result: hash-to-curve costs 1⁺ exponentiation for essentially any prime-field elliptic curve.
IST State of the art for BLS, BN, NIST, secp256k1, and other curves not covered by Elligator or lcart.

https://github.com/kwantam/bls12-381_hash
https://github.com/kwantam/bls_sigs_ref
rsw@cs.stanford.edu