Fast and simple constant-time hashing to the BLS12-381 elliptic curve (and other curves, too!)

Riad S. Wahby, Dan Boneh

Stanford

August 26th, 2019

Motivation

Why do we need hashes to elliptic curves?

Motivation

Why do we need hashes to elliptic curves?

- Our initial motivation: BLS signatures [BLS01]

Motivation

Why do we need hashes to elliptic curves?

- Our initial motivation: BLS signatures [BLS01]
- Also: VRFs, OPRFs, PAKEs, IBE, ...

Motivation

Why do we need hashes to elliptic curves?

- Our initial motivation: BLS signatures [BLS01]
- Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?

Motivation

Why do we need hashes to elliptic curves?

- Our initial motivation: BLS signatures [BLS01]
- Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?

- Side channels (e.g., Dragonblood [VR19])

Motivation

Why do we need hashes to elliptic curves?

- Our initial motivation: BLS signatures [BLS01]
- Also: VRFs,
fixed-modulus arithmetic only
Why simple and constant time?
- Side channels (e.g., Dragonblood [VR19])

Motivation

Why do we need hashes to elliptic curves?

- Our initial motivation: BLS signatures [BLS01]
- Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?

- Side channels (e.g., Dragonblood [VR19])
- Embedded systems often have fixed-modulus hardware acceleration but slow generic bigint

Motivation

Why do we need hashes to elliptic curves?

- Our initial motivation: BLS signatures [BLS01]
- Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?

- Side channels (e.g., Dragonblood [VR19])
- Embedded systems often have fixed-modulus hardware acceleration but slow generic bigint

Why the BLS12-381 pairing-friendly elliptic curve?

- Widely used curve for ≈ 120-bit security level

Motivation

Why do we need hashes to elliptic curves?

- Our initial motivation: BLS signatures [BLS01]
- Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?

- Side channels (e.g., Dragonblood [VR19])
- Embedded systems often have fixed-modulus hardware acceleration but slow generic bigint

Why the BLS12-381 pairing-friendly elliptic curve?

- Widely used curve for ≈ 120-bit security level ZK proofs, signatures, IBE, ABE, ...

Our contributions

1. An "indirect" map to pairing-friendly curves that sidesteps limitations of existing maps

Our contributions

1. An "indirect" map to pairing-friendly curves that sidesteps limitations of existing maps
2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation \checkmark On par with the fastest existing maps

Our contributions

1. An "indirect" map to pairing-friendly curves that sidesteps limitations of existing maps
2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation \checkmark On par with the fastest existing maps \checkmark Fast impls are simple and constant time

Our contributions

1. An "indirect" map to pairing-friendly curves that sidesteps limitations of existing maps
2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation \checkmark On par with the fastest existing maps \checkmark Fast impls are simple and constant time \checkmark Applies to essentially any prime-field curve

Our contributions

1. An "indirect" map to pairing-friendly curves that sidesteps limitations of existing maps
2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation \checkmark On par with the fastest existing maps \checkmark Fast impls are simple and constant time \checkmark Applies to essentially any prime-field curve
3. Impl and eval of 34 hash variants for BLS12-381

Our contributions

1. An "indirect" map to pairing-friendly curves that sidesteps limitations of existing maps
2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation \checkmark On par with the fastest existing maps \checkmark Fast impls are simple and constant time \checkmark Applies to essentially any prime-field curve
3. Impl and eval of 34 hash variants for BLS12-381 $\checkmark 1.3-2 \times$ faster than prior constant-time hashes, $\leq 9 \%$ slower than non-CT deterministic hashes

Our contributions

1. An "indirect" map to pairing-friendly curves that sidesteps limitations of existing maps
2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation \checkmark On par with the fastest existing maps \checkmark Fast impls are simple and constant time \checkmark Applies to essentially any prime-field curve
3. Impl and eval of 34 hash variants for BLS12-381 $\checkmark 1.3-2 \times$ faster than prior constant-time hashes, $\leq 9 \%$ slower than non-CT deterministic hashes Open-source impls in C, Rust, Python, ...

Roadmap

1. Hash functions to elliptic curves
2. Optimizing the map of [BCIMRT10]
3. Evaluation results

Notation

\mathbb{F}_{p} is the finite field of integers mod a prime p

Notation

\mathbb{F}_{p} is the finite field of integers mod a prime p
$H_{p}:\{0,1\}^{\star} \rightarrow \mathbb{F}_{p}$ modeled as a random oracle

Notation

\mathbb{F}_{p} is the finite field of integers mod a prime p
$H_{p}:\{0,1\}^{\star} \rightarrow \mathbb{F}_{p}$ modeled as a random oracle
$E\left(\mathbb{F}_{p}\right)$ is the elliptic curve group with identity \mathcal{O} and points $\left\{(x, y): x, y \in \mathbb{F}_{p}, y^{2}=x^{3}+a x+b\right\}$ multiplicative notation

Notation

\mathbb{F}_{p} is the finite field of integers mod a prime p
$H_{p}:\{0,1\}^{\star} \rightarrow \mathbb{F}_{p}$ modeled as a random oracle
$E\left(\mathbb{F}_{p}\right)$ is the elliptic curve group with identity \mathcal{O} and points $\left\{(x, y): x, y \in \mathbb{F}_{p}, y^{2}=x^{3}+a x+b\right\}$ multiplicative notation
$\mathbb{G} \subseteq E\left(\mathbb{F}_{p}\right)$ is a subgroup of prime order q. $\# E\left(\mathbb{F}_{p}\right)=h q ; h$ is the cofactor.

Hash and check

HashToCurve ${ }_{H \& C}(m s g)$:

ctr $\leftarrow 0$
$y \leftarrow \perp$
while $y=\perp$:
$x \leftarrow H_{p}(\operatorname{ctr} \| \mathrm{msg})$
$\mathrm{ctr} \leftarrow \mathrm{ctr}+1$
$y S q \leftarrow x^{3}+a x+b$
$y \leftarrow \operatorname{sqrt}(y S q) \quad / / \perp$ if $y S q$ is non-square
$P \leftarrow(x, y)$
return P^{h}
// map to \mathbb{G} via cofactor mul

Hash and check

HashToCurve ${ }_{H \& C}(m s g)$:

$\mathrm{ctr} \leftarrow 0$
$y \leftarrow \perp$
while $y=\perp$:
$x \leftarrow H_{p}(\operatorname{ctr} \| \mathrm{msg})$
$\mathrm{ctr} \leftarrow \mathrm{ctr}+1$
$y S q \leftarrow x^{3}+a x+b$
$y \leftarrow \operatorname{sqrt}(y S q) \quad / / \perp$ if $y S q$ is non-square
$P \leftarrow(x, y)$
return $P^{h} \quad / /$ map to \mathbb{G} via cofactor mul

Hash and check

HashToCurve H\& (msg) :

$\mathrm{ctr} \leftarrow 0$
$y \leftarrow \perp$
while $y=\perp$:
$x \leftarrow H_{p}(\operatorname{ctr} \| \mathrm{msg})$
$\mathrm{ctr} \leftarrow \mathrm{ctr}+1$
$y S q \leftarrow x^{3}+a x+b$
$y \leftarrow \operatorname{sqrt}(y S q) \quad / / \perp$ if $y S q$ is non-square
$P \leftarrow(x, y)$
return $P^{h} \quad / /$ map to \mathbb{G} via cofactor mul
$E\left(\mathbb{F}_{p}\right)=\left\{(x, y): x, y \in \mathbb{F}_{p}, y^{2}=x^{3}+a x+b\right\}$

Hash and check

HashToCurve ${ }_{H \& C}(m s g)$:

$\mathrm{ctr} \leftarrow 0$
$y \leftarrow \perp$
while $y=\perp$:

$$
x \leftarrow H_{p}(\operatorname{ctr} \| \mathrm{msg})
$$

$\mathrm{ctr} \leftarrow \mathrm{ctr}+1$
$y S q \leftarrow x^{3}+a x+b$
$y \leftarrow \operatorname{sqrt}(y S q) \quad / / \perp$ if $y S q$ is non-square
$P \leftarrow(x, y)$
return $P^{h} \quad / /$ map to \mathbb{G} via cofactor mul

Hash and check
HashToCurve ${ }_{H \& C}$ (msg):

$$
\begin{aligned}
& \operatorname{ctr} \leftarrow 0 \\
& y \leftarrow \stackrel{\perp}{\text { while } y=\perp} \\
& \quad x \leftarrow H_{p}(\operatorname{ctr} \| \mathrm{msg})
\end{aligned}
$$

$$
\operatorname{ctr} \leftarrow \operatorname{ctr}+1
$$

$$
y S q \leftarrow x^{3}+a x+b
$$

$$
y \leftarrow \operatorname{sqrt}(y S q) \quad / / \perp \text { if } y S q \text { is non-square }
$$

$P \leftarrow(x, y)$
return $P^{h} \quad / /$ map to \mathbb{G} via cofactor mul
Not constant time; "bad" inputs are easy to find.

Hash and check
HashToCurve ${ }_{H \& C}$ (msg):

$$
\begin{aligned}
& \operatorname{ctr} \leftarrow 0 \\
& y \leftarrow \stackrel{\perp}{\text { while } y=\perp} \\
& \quad x \leftarrow H_{p}(\operatorname{ctr} \| \mathrm{msg})
\end{aligned}
$$

$$
\operatorname{ctr} \leftarrow \operatorname{ctr}+1
$$

$$
y S q \leftarrow x^{3}+a x+b
$$

$$
y \leftarrow \operatorname{sqrt}(y S q) \quad / / \perp \text { if } y S q \text { is non-square }
$$

$P \leftarrow(x, y)$
return $P^{h} \quad / /$ map to \mathbb{G} via cofactor mul
Not constant time; "bad" inputs are easy to find.
Loop a fixed number of times?

Hash and check
HashToCurve ${ }_{H \& C}$ (msg):

$$
\begin{aligned}
& \operatorname{ctr} \leftarrow 0 \\
& y \leftarrow \perp \\
& \text { while } y=\perp \\
& \quad x \leftarrow H_{p}(\operatorname{ctr} \| \mathrm{msg})
\end{aligned}
$$

$$
\operatorname{ctr} \leftarrow \operatorname{ctr}+1
$$

$$
y S q \leftarrow x^{3}+a x+b
$$

$$
y \leftarrow \operatorname{sqrt}(y S q) \quad / / \perp \text { if } y S q \text { is non-square }
$$

$P \leftarrow(x, y)$
return $P^{h} \quad / /$ map to \mathbb{G} via cofactor mul
Not constant time; "bad" inputs are easy to find.
\boldsymbol{X} Loop a fixed number of times?
Slow; well-meaning "optimization" breaks CT.

Deterministic maps to elliptic curves
$M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5:$

Deterministic maps to elliptic curves
$M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M	Restrictions	Cost
$[\mathrm{BF} 01]$	$p \equiv 2 \bmod 3, a=0$	$1 \exp$

Deterministic maps to elliptic curves
$M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	$[\mathrm{BF} 01]$	$p \equiv 2 \bmod 3, a=0$	$1 \exp$
	$[\mathrm{SW} 06]$	none	$3 \exp$

Deterministic maps to elliptic curves
$M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	$[\mathrm{BF} 01]$	$p \equiv 2 \bmod 3, a=0$	$1 \exp$
	$[\mathrm{SW} 06]$	none	$3 \exp$
SWU	$[\mathrm{Ulas} 07]$	$p \equiv 3 \bmod 4, a b \neq 0$	$3 \exp$

Deterministic maps to elliptic curves
$M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	$[\mathrm{BF} 01]$	$p \equiv 2 \bmod 3, a=0$	$1 \exp$
	$[\mathrm{SWO} 06$	none	$3 \exp$
SWU	$[\mathrm{Ulas07}]$	$p \equiv 3 \bmod 4, a b \neq 0$	$3 \exp$
	$[$ Icart09 $]$	$p \equiv 2 \bmod 3$	$1 \exp$

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	$[\mathrm{BF} 01]$	$p \equiv 2 \bmod 3, a=0$	$1 \exp$
	$[$ SW06 $]$	none	$3 \exp$
SWU	$[$ Ulas07 $]$	$p \equiv 3 \bmod 4, a b \neq 0$	$3 \exp$
	$[$ Icart09 $]$	$p \equiv 2 \bmod 3$	$1 \exp$
S-SWU	$[$ BCIMRT10 $]$	$p \equiv 3 \bmod 4, a b \neq 0$	$2 \exp$

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M
[BF01] [SW06]
SWU

S-SWU
Elligator
[Ulas07]
[Icart09]
[BCIMRT10]
[BHKL13]

Restrictions

$\begin{array}{l}p \equiv 2 \bmod 3, a=0 \\ \text { none }\end{array}$	$1 \exp$
$3 \exp$	

$p \equiv 3 \bmod 4, a b \neq 03 \exp$
$p \equiv 2 \bmod 3$
$p \equiv 3 \bmod 4, a b \neq 02 \exp$
$b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$

Cost

1 exp

1 exp

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M

SWU

S-SWU
Elligator

Restrictions

$p \equiv 2 \bmod 3, a=0$	$1 \exp$
none	$3 \exp$
$p \equiv 3 \bmod 4, a b \neq 0$	$3 \exp$
$p \equiv 2 \bmod 3$	$1 \exp$
$p \equiv 3 \bmod 4, a b \neq 0$	$2 \exp$
$b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	$1 \exp$

[Ulas07]
[Icart09]
[BCIMRT10]
[BHKL13]
[BF01] [SW06]

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \bmod 3, a=0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \bmod 4, a b \neq 0$	3 exp
	[Icart09]	$p \equiv 2 \bmod 3$	1 exp
S-SWU	[BCIMRT10]	$p \equiv 3 \bmod 4, a b \neq 0$	2 exp
Elligator	[BHKL13]	$b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	1 exp
This work		$a b \neq 0$ none	$\begin{aligned} & 1 \exp \\ & 1^{+} \exp \end{aligned}$

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	$[\mathrm{BFO1]}$	$p \equiv 2 \bmod 3, a=0$	$1 \exp$
	$[\mathrm{SWO6}]$	none	$3 \exp$
SWU	$[\mathrm{Ulas07}]$	$p \equiv 3 \bmod 4, a b \neq 0$	$3 \exp$
	$[$ Icart09]	$p \equiv 2 \bmod 3$	$1 \exp$
S-SWU	$[$ BCIMRT10]	$p \equiv 3 \bmod 4, a b \neq 0$	$2 \exp$
Elligator	$[$ BHKL13]	$b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	$1 \exp$
This work			$a b \neq 0$
		none	$1 \exp$

BLS12-381: $p \equiv 1 \bmod 3, \quad a=0, \quad 2 \nmid \# E\left(\mathbb{F}_{p}\right)$
[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	$[\mathrm{BFO1]}$	$x p \equiv 2 \bmod 3, a=0$	$1 \exp$
	$[\mathrm{SWO6}]$	none	$3 \exp$
SWU	$[\mathrm{Ulas07}]$	$p \equiv 3 \bmod 4, a b \neq 0$	$3 \exp$
	$[\mathrm{Icart09]}$	$x p \equiv 2 \bmod 3$	$1 \exp$
S-SWU	$[\mathrm{BCIMRT} 10]$	$p \equiv 3 \bmod 4, a b \neq 0$	$2 \exp$
Elligator	$[\mathrm{BHKL13}]$	$b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	$1 \exp$
This work		$a b \neq 0$	$1 \exp$
		none	$1^{+} \exp$

BLS12-381: $p \equiv 1 \bmod 3, \quad a=0, \quad 2 \nmid \# E\left(\mathbb{F}_{p}\right)$
[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19 . .]

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	$[\mathrm{BFO1]}$	$x p \equiv 2 \bmod 3, a=0$	$1 \exp$
	$[\mathrm{SWO6}]$	none	$3 \exp$
SWU	$[\mathrm{Ulas07]}$	$x p \equiv 3 \bmod 4, a b \neq 0$	$3 \exp$
	$[\mathrm{Icart09]}$	$x p \equiv 2 \bmod 3$	$1 \exp$
S-SWU	$[\mathrm{BCIMRT} 10]$	$x p \equiv 3 \bmod 4, a b \neq 0$	$2 \exp$
Elligator	$[\mathrm{BHKL13}]$	$b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	$1 \exp$
This work		$a b \neq 0$	$1 \exp$
		none	$1^{+} \exp$

BLS12-381: $p \equiv 1 \bmod 3, \quad a=0, \quad 2 \nmid \# E\left(\mathbb{F}_{p}\right)$
[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19 . .]

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	$[\mathrm{BFO1]}$	$x p \equiv 2 \bmod 3, a=0$	$1 \exp$
	$[\mathrm{SWO6}]$	none	$3 \exp$
SWU	$[\mathrm{Ulas07]}$	$x p \equiv 3 \bmod 4, a b \neq 0$	$3 \exp$
	$[\mathrm{Icart09]}$	$x p \equiv 2 \bmod 3$	$1 \exp$
S-SWU	$[\mathrm{BCIMRT} 10]$	$x p \equiv 3 \bmod 4, a b \neq 0$	$2 \exp$
Elligator	$[\mathrm{BHKL13}]$	$x b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	$1 \exp$
This work		$a b \neq 0$	$1 \exp$
		none	$1^{+} \exp$

BLS12-381: $p \equiv 1 \bmod 3, \quad a=0, \quad 2 \nmid \# E\left(\mathbb{F}_{p}\right)$
[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19 . .]

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
SWU	[BF01]	$X p \equiv 2 \bmod 3, a=0$	1 exp
	[SW06]	\checkmark none	3 exp
	[Ulas07]	$x p \equiv 3 \bmod 4, a b \neq 0$	3 exp
	[Icart09]	$x p \equiv 2 \bmod 3$	1 exp
S-SWU	[BCIMRT10]	$x p \equiv 3 \bmod 4, a b \neq 0$	$2 \exp$
Elligator	[BHKL13]	$x b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	1 exp
This work		$a b \neq 0$ none	$\begin{aligned} & 1 \exp \\ & 1^{+} \exp \end{aligned}$

BLS12-381: $p \equiv 1 \bmod 3, \quad a=0, \quad 2 \nmid \# E\left(\mathbb{F}_{p}\right)$
[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19 . .]

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
SWU	[BF01]	$X p \equiv 2 \bmod 3, a=0$	1 exp
	[SW06]	\checkmark none	3 exp
	[Ulas07]	$x p \equiv 3 \bmod 4, a b \neq 0$	3 exp
	[Icart09]	$x p \equiv 2 \bmod 3$	1 exp
S-SWU	[BCIMRT10]	$x p \equiv 3 \bmod 4, a b \neq 0$	2 exp
Elligator	[BHKL13]	$x b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	1 exp
This work		$x a b \neq 0$	1 exp
		\checkmark none	$1^{+} \exp$

BLS12-381: $p \equiv 1 \bmod 3, \quad a=0, \quad 2 \nmid \# E\left(\mathbb{F}_{p}\right)$
[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

Hash functions from deterministic maps

Compose H_{p} and M in a natural way:
HashToCurve ${ }_{\mathrm{NU}}$ (msg) :

$$
\begin{array}{ll}
t \leftarrow H_{p}(\mathrm{msg}) & / /\{0,1\}^{\star} \rightarrow \mathbb{F}_{p} \\
P \leftarrow M(t) & / / \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right) \\
\text { return } P^{h} & / / E\left(\mathbb{F}_{p}\right) \rightarrow \mathbb{G}
\end{array}
$$

Hash functions from deterministic maps

Compose H_{p} and M in a natural way:
HashToCurve ${ }_{\mathrm{NU}}(\mathrm{msg})$:

$$
\begin{array}{ll}
t \leftarrow H_{p}(\mathrm{msg}) & / /\{0,1\}^{\star} \rightarrow \mathbb{F}_{p} \\
P \leftarrow M(t) & / / \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right) \\
\text { return } P^{h} & / / E\left(\mathbb{F}_{p}\right) \rightarrow \mathbb{G}
\end{array}
$$

Hash functions from deterministic maps

Compose H_{p} and M in a natural way:
HashToCurve ${ }_{\mathrm{NU}}$ (msg) :

$$
\begin{array}{ll}
t \leftarrow H_{p}(\mathrm{msg}) & / /\{0,1\}^{\star} \rightarrow \mathbb{F}_{p} \\
P \leftarrow M(t) & / / \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right) \\
\text { return } P^{h} & / / E\left(\mathbb{F}_{p}\right) \rightarrow \mathbb{G}
\end{array}
$$

Hash functions from deterministic maps

Compose H_{p} and M in a natural way:
HashToCurve ${ }_{\mathrm{NU}}$ (msg) :

$$
\begin{array}{ll}
t \leftarrow H_{p}(\mathrm{msg}) & / /\{0,1\}^{\star} \rightarrow \mathbb{F}_{p} \\
P \leftarrow M(t) & / / \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right) \\
\text { return } P^{h} & / / E\left(\mathbb{F}_{p}\right) \rightarrow \mathbb{G}
\end{array}
$$

Hash functions from deterministic maps

Compose H_{p} and M in a natural way:
HashToCurve ${ }_{\mathrm{NU}}(\mathrm{msg})$:

$$
\begin{array}{ll}
t \leftarrow H_{p}(\mathrm{msg}) & / /\{0,1\}^{\star} \rightarrow \mathbb{F}_{p} \\
P \leftarrow M(t) & / / \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right) \\
\text { return } P^{h} & / / E\left(\mathbb{F}_{p}\right) \rightarrow \mathbb{G}
\end{array}
$$

Possible issue: M is not a bijection: $\# E\left(\mathbb{F}_{p}\right) \neq p$ output distribution is nonuniform

Hash functions from deterministic maps

Compose H_{p} and M in a natural way:
HashToCurve ${ }_{\mathrm{NU}}(\mathrm{msg})$:

$$
\begin{array}{ll}
t \leftarrow H_{p}(\mathrm{msg}) & / /\{0,1\}^{\star} \rightarrow \mathbb{F}_{p} \\
P \leftarrow M(t) & / / \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right) \\
\text { return } P^{h} & / / E\left(\mathbb{F}_{p}\right) \rightarrow \mathbb{G}
\end{array}
$$

Possible issue: M is not a bijection: $\# E\left(\mathbb{F}_{p}\right) \neq p$ output distribution is nonuniform

This could be OK—but what if we need uniformity?

Uniform hashing from deterministic maps

For uniformity [BCIMRT10,FFSTV13]:

HashToCurve(msg) :

$$
\begin{aligned}
& P_{1} \leftarrow M\left(H_{p}(0 \| \mathrm{msg})\right) \\
& P_{2} \leftarrow M\left(H_{p}(1 \| \mathrm{msg})\right) \\
& P \leftarrow P_{1} \cdot P_{2} \\
& \text { return } P^{h}
\end{aligned}
$$

Uniform hashing from deterministic maps

For uniformity [BCIMRT10,FFSTV13]:

HashToCurve(msg) :

$$
\begin{aligned}
& P_{1} \leftarrow M\left(H_{p}(0 \| \mathrm{msg})\right) \\
& P_{2} \leftarrow M\left(H_{p}(1 \| \mathrm{msg})\right) \\
& P \leftarrow P_{1} \cdot P_{2} \\
& \text { return } P^{h}
\end{aligned}
$$

M needs to be well distributed: "not too lumpy"
\checkmark All of the M we've seen are well distributed.

Uniform hashing from deterministic maps

For uniformity [BCIMRT10,FFSTV13]:
HashToCurve(msg) :

$$
\begin{aligned}
& P_{1} \leftarrow M\left(H_{p}(0 \| \mathrm{msg})\right) \\
& P_{2} \leftarrow M\left(H_{p}(1 \| \mathrm{msg})\right) \\
& P \leftarrow P_{1} \cdot P_{2} \\
& \text { return } P^{h}
\end{aligned}
$$

. M needs to be well distributed: "not too lumpy" \checkmark All of the M we've seen are well distributed.

HashToCurve is indifferentiable from RO [MRH05]

Roadmap

1. Hash functions to elliptic curves
2. Optimizing the map of [BCIMRT10]
3. Evaluation results

The Simplified SWU map [BCIMRT10]

$E: y^{2}=f(x)=x^{3}+a x+b, a b \neq 0$.
Idea: pick x s.t. $f(u x)=u^{3} f(x)$.
For u non-square $\in \mathbb{F}_{p}, f(x)$ or $f(u x)$ is square.

The Simplified SWU map [BCIMRT10]

$E: y^{2}=f(x)=x^{3}+a x+b, a b \neq 0$.
Idea: pick x s.t. $f(u x)=u^{3} f(x)$.
For u non-square $\in \mathbb{F}_{p}, f(x)$ or $f(u x)$ is square.

$$
\begin{aligned}
u^{3} x^{3}+a u x+b & =u^{3}\left(x^{3}+a x+b\right) \\
x & =-\frac{b}{a}\left(1+\frac{1}{u^{2}+u}\right)
\end{aligned}
$$

The Simplified SWU map [BCIMRT10]

$E: y^{2}=f(x)=x^{3}+a x+b, a b \neq 0$.
Idea: pick x s.t. $f(u x)=u^{3} f(x)$.
For u non-square $\in \mathbb{F}_{p}, f(x)$ or $f(u x)$ is square.

$$
\begin{aligned}
u^{3} x^{3}+a u x+b & =u^{3}\left(x^{3}+a x+b\right) \\
x & =-\frac{b}{a}\left(1+\frac{1}{u^{2}+u}\right)
\end{aligned}
$$

If $p \equiv 3 \bmod 4, u=-t^{2}$ is non-square

The Simplified SWU map [BCIMRT10]

$$
E: y^{2}=f(x)=x^{3}+a x+b, a b \neq 0 .
$$

Idea: pick x s.t. $f(u x)=u^{3} f(x)$.
For u non-square $\in \mathbb{F}_{p}, f(x)$ or $f(u x)$ is square.

$$
\begin{aligned}
u^{3} x^{3}+a u x+b & =u^{3}\left(x^{3}+a x+b\right) \\
x & =-\frac{b}{a}\left(1+\frac{1}{u^{2}+u}\right)
\end{aligned}
$$

If $p \equiv 3 \bmod 4, u=-t^{2}$ is non-square, so:

$$
X_{0}(t) \triangleq-\frac{b}{a}\left(1+\frac{1}{t^{4}-t^{2}}\right) \quad X_{1}(t) \triangleq-t^{2} X_{0}(t)
$$

Evaluating the S-SWU map

$\operatorname{S-SWU}(t) \triangleq \begin{cases}\left(X_{0}(t), \sqrt{f\left(X_{0}(t)\right)}\right) & \text { if } f\left(X_{0}(t)\right) \text { is square } \\ \left(X_{1}(t), \sqrt{f\left(X_{1}(t)\right)}\right) & \text { otherwise }\end{cases}$

Evaluating the S-SWU map

$\operatorname{S-SWU}(t) \triangleq \begin{cases}\left(X_{0}(t), \sqrt{f\left(X_{0}(t)\right)}\right) & \text { if } f\left(X_{0}(t)\right) \text { is square } \\ \left(X_{1}(t), \sqrt{f\left(X_{1}(t)\right)}\right) & \text { otherwise }\end{cases}$
Attempt $\# 1($ assume $p \equiv 3 \bmod 4)$:

$$
\begin{array}{ll}
x_{0} \leftarrow X_{0}(t) & \\
y_{0} \leftarrow f\left(x_{0}\right)^{\frac{p+1}{4}} & \text { // } \boldsymbol{x} \text { expensive } \\
x_{1} \leftarrow-t^{2} x_{0} & \text { // a.k.a. } x_{1}(t) \\
y_{1} \leftarrow f\left(x_{1}\right)^{\frac{p+1}{4}} & / / \boldsymbol{x} \text { expensive } \\
\text { if } y_{0}^{2}=f\left(x_{0}\right): \text { return }\left(x_{0}, y_{0}\right) & \\
\text { else: return }\left(x_{1}, y_{1}\right) &
\end{array}
$$

Evaluating the S-SWU map

$\operatorname{S-SWU}(t) \triangleq \begin{cases}\left(X_{0}(t), \sqrt{f\left(X_{0}(t)\right)}\right) & \text { if } f\left(X_{0}(t)\right) \text { is square } \\ \left(X_{1}(t), \sqrt{f\left(X_{1}(t)\right)}\right) & \text { otherwise }\end{cases}$
Attempt \#1 (assume $p \equiv 3 \bmod 4)$:

$$
\begin{array}{ll}
x_{0} \leftarrow X_{0}(t) & \\
y_{0} \leftarrow f\left(x_{0}\right)^{\frac{p+1}{4}} & \text { // } x \text { expensive } \\
x_{1} \leftarrow-t^{2} x_{0} & \text { // a.k.a. } X_{1}(t) \\
y_{1} \leftarrow f\left(x_{1}\right)^{\frac{p+1}{4}} & / / \boldsymbol{x} \text { expensive } \\
\text { if } y_{0}^{2}=f\left(x_{0}\right): \text { return }\left(x_{0}, y_{0}\right) & \\
\text { else: return }\left(x_{1}, y_{1}\right) &
\end{array}
$$

Evaluating the S-SWU map

$\operatorname{S-SWU}(t) \triangleq \begin{cases}\left(X_{0}(t), \sqrt{f\left(X_{0}(t)\right)}\right) & \text { if } f\left(X_{0}(t)\right) \text { is square } \\ \left(X_{1}(t), \sqrt{f\left(X_{1}(t)\right)}\right) & \text { otherwise }\end{cases}$
Attempt $\# 1($ assume $p \equiv 3 \bmod 4)$:

$$
\begin{array}{ll}
x_{0} \leftarrow X_{0}(t) & \\
y_{0} \leftarrow f\left(x_{0}\right)^{\frac{p+1}{4}} & \text { // } x \text { expensive } \\
x_{1} \leftarrow-t^{2} x_{0} & \text { // a.k.a. } X_{1}(t) \\
y_{1} \leftarrow f\left(x_{1}\right)^{\frac{p+1}{4}} & / / \boldsymbol{x} \text { expensive } \\
\text { if } y_{0}^{2}=f\left(x_{0}\right): \text { return }\left(x_{0}, y_{0}\right) & \\
\text { else: return }\left(x_{1}, y_{1}\right) &
\end{array}
$$

Evaluating the S-SWU map

$\operatorname{S-SWU}(t) \triangleq \begin{cases}\left(X_{0}(t), \sqrt{f\left(X_{0}(t)\right)}\right) & \text { if } f\left(X_{0}(t)\right) \text { is square } \\ \left(X_{1}(t), \sqrt{f\left(X_{1}(t)\right)}\right) & \text { otherwise }\end{cases}$
Attempt $\# 1($ assume $p \equiv 3 \bmod 4)$:

$$
\begin{aligned}
& x_{0} \leftarrow X_{0}(t) \\
& y_{0} \leftarrow f\left(x_{0}\right)^{\frac{p+1}{4}} \\
& x_{1} \leftarrow-t^{2} x_{0} \\
& y_{1} \leftarrow f\left(x_{1}\right)^{\frac{p+1}{4}} \\
& \text { if } y_{0}^{2}=f\left(x_{0}\right): \text { return }\left(x_{0}, y_{0}\right) \\
& \text { else: return }\left(x_{1}, y_{1}\right)
\end{aligned}
$$

Requires two exponentiations! Can we do better?

Eliminating an exponentiation

Recall: $f\left(x_{1}\right)=-t^{6} f\left(x_{0}\right)$. So:

$$
f\left(x_{1}\right)^{\frac{p+1}{4}}=\left(-t^{6} f\left(x_{0}\right)\right)^{\frac{p+1}{4}}
$$

Eliminating an exponentiation

Recall: $f\left(x_{1}\right)=-t^{6} f\left(x_{0}\right)$. So:

$$
\begin{aligned}
f\left(x_{1}\right)^{\frac{p+1}{4}} & =\left(-t^{6} f\left(x_{0}\right)\right)^{\frac{p+1}{4}} \\
& =t^{3}\left(-f\left(x_{0}\right)\right)^{\frac{p+1}{4}}=t^{3} \sqrt{-f\left(x_{0}\right)}
\end{aligned}
$$

Eliminating an exponentiation

Recall: $f\left(x_{1}\right)=-t^{6} f\left(x_{0}\right)$. So:

$$
\begin{aligned}
f\left(x_{1}\right)^{\frac{p+1}{4}} & =\left(-t^{6} f\left(x_{0}\right)\right)^{\frac{p+1}{4}} \\
& =t^{3}\left(-f\left(x_{0}\right)\right)^{\frac{p+1}{4}}=t^{3} \sqrt{-f\left(x_{0}\right)}
\end{aligned}
$$

We have $f\left(x_{0}\right)^{\frac{p+1}{4}}$. Can we use this?

Eliminating an exponentiation

Recall: $f\left(x_{1}\right)=-t^{6} f\left(x_{0}\right)$. So:

$$
\begin{aligned}
f\left(x_{1}\right)^{\frac{p+1}{4}} & =\left(-t^{6} f\left(x_{0}\right)\right)^{\frac{p+1}{4}} \\
& =t^{3}\left(-f\left(x_{0}\right)\right)^{\frac{p+1}{4}}=t^{3} \sqrt{-f\left(x_{0}\right)}
\end{aligned}
$$

We have $f\left(x_{0}\right)^{\frac{p+1}{4}}$. Can we use this?

$$
\left(f\left(x_{0}\right)^{\frac{p+1}{4}}\right)^{2}=f\left(x_{0}\right)^{\frac{p+1}{2}}=f\left(x_{0}\right) \cdot f\left(x_{0}\right)^{\frac{p-1}{2}}
$$

Eliminating an exponentiation

Recall: $f\left(x_{1}\right)=-t^{6} f\left(x_{0}\right)$. So:

$$
\begin{aligned}
f\left(x_{1}\right)^{\frac{p+1}{4}} & =\left(-t^{6} f\left(x_{0}\right)\right)^{\frac{p+1}{4}} \\
& =t^{3}\left(-f\left(x_{0}\right)\right)^{\frac{p+1}{4}}=t^{3} \sqrt{-f\left(x_{0}\right)}
\end{aligned}
$$

We have $f\left(x_{0}\right)^{\frac{p+1}{4}}$. Can we use this?

$$
\begin{gathered}
\left(f\left(x_{0}\right)^{\frac{p+1}{4}}\right)^{2}=f\left(x_{0}\right)^{\frac{p+1}{2}}=f\left(x_{0}\right) \cdot f\left(x_{0}\right)^{\frac{p-1}{2}} \\
\text { Legendre symbol! }
\end{gathered}
$$

Eliminating an exponentiation

Recall: $f\left(x_{1}\right)=-t^{6} f\left(x_{0}\right)$. So:

$$
\begin{aligned}
f\left(x_{1}\right)^{\frac{p+1}{4}} & =\left(-t^{6} f\left(x_{0}\right)\right)^{\frac{p+1}{4}} \\
& =t^{3}\left(-f\left(x_{0}\right)\right)^{\frac{p+1}{4}}=t^{3} \sqrt{-f\left(x_{0}\right)}
\end{aligned}
$$

We have $f\left(x_{0}\right)^{\frac{p+1}{4}}$. Can we use this?

$$
\begin{aligned}
\left(f\left(x_{0}\right)^{\frac{p+1}{4}}\right)^{2} & =f\left(x_{0}\right)^{\frac{p+1}{2}}=f\left(x_{0}\right) \cdot f\left(x_{0}\right)^{\frac{p-1}{2}} \\
& =-f\left(x_{0}\right) \quad \text { if } f\left(x_{0}\right) \text { is non-square }
\end{aligned}
$$

$\checkmark f\left(x_{0}\right)^{\frac{p+1}{4}}$ is $\sqrt{-f\left(x_{0}\right)}$ when $f\left(x_{0}\right)$ is non-square!

Evaluating the S-SWU map-faster!

Attempt \#2 (assume $p \equiv 3 \bmod 4)$:

$$
\begin{array}{ll}
x_{0} \leftarrow X_{0}(t) & \\
y_{0} \leftarrow f\left(x_{0}\right)^{(p+1) / 4} & / / x \text { expensive } \\
x_{1} \leftarrow-t^{2} x_{0} & / / \text { a.k.a. } x_{1}(t) \\
y_{1} \leftarrow t^{3} y_{0} & / / \checkmark \text { cheap! } \\
\text { if } y_{0}^{2}=f\left(x_{0}\right): \text { return }\left(x_{0}, y_{0}\right) & \\
\text { else: return }\left(x_{1}, y_{1}\right) &
\end{array}
$$

Evaluating the S-SWU map-faster!

Attempt \#2 (assume $p \equiv 3 \bmod 4)$:

$$
\begin{array}{ll}
x_{0} \leftarrow X_{0}(t) & \\
y_{0} \leftarrow f\left(x_{0}\right)^{(p+1) / 4} & / / x \text { expensive } \\
x_{1} \leftarrow-t^{2} x_{0} & / / \text { a.k.a. } x_{1}(t) \\
y_{1} \leftarrow t^{3} y_{0} & / / \checkmark \text { cheap! } \\
\text { if } y_{0}^{2}=f\left(x_{0}\right): \text { return }\left(x_{0}, y_{0}\right) & \\
\text { else: return }\left(x_{1}, y_{1}\right) &
\end{array}
$$

\checkmark Prior work [BDLSY12] lets us avoid inversions.

Evaluating the S-SWU map-faster!

Attempt \#2 (assume $p \equiv 3 \bmod 4)$:

$$
\begin{array}{ll}
x_{0} \leftarrow X_{0}(t) & \\
y_{0} \leftarrow f\left(x_{0}\right)^{(p+1) / 4} & / / x \text { expensive } \\
x_{1} \leftarrow-t^{2} x_{0} & / / \text { a.k.a. } x_{1}(t) \\
y_{1} \leftarrow t^{3} y_{0} & / / \checkmark \text { cheap! } \\
\text { if } y_{0}^{2}=f\left(x_{0}\right): \text { return }\left(x_{0}, y_{0}\right) & \\
\text { else: return }\left(x_{1}, y_{1}\right) &
\end{array}
$$

\checkmark Prior work [BDLSY12] lets us avoid inversions.
\checkmark Straightforward to generalize to $p \equiv 1 \bmod 4$.

Supporting BLS12-381: the $a b=0$ case

Issue: S-SWU still does not work with $a b=0$.

Rules out pairing-friendly curves [BLS03,BN06,...]

Supporting BLS12-381: the $a b=0$ case

Issue: S-SWU still does not work with $a b=0$.
Rules out pairing-friendly curves [BLS03,BN06,...]

Idea: map to a curve E^{\prime} having $a b \neq 0$ and an efficiently-computable homomorphism to E.

Supporting BLS12-381: the $a b=0$ case

Issue: S-SWU still does not work with $a b=0$.
Rules out pairing-friendly curves [BLS03,BN06,...]

Idea: map to a curve E^{\prime} having $a b \neq 0$ and an efficiently-computable homomorphism to E.

Specifically: Find $E^{\prime}\left(\mathbb{F}_{p}\right) d$-isogenous to E, d small. Defines a degree $\approx d$ rational map $E^{\prime}\left(\mathbb{F}_{p}\right) \rightarrow E\left(\mathbb{F}_{p}\right)$

Supporting BLS12-381: the $a b=0$ case

Issue: S-SWU still does not work with $a b=0$.
Rules out pairing-friendly curves [BLS03,BN06,...]

Idea: map to a curve E^{\prime} having $a b \neq 0$ and an efficiently-computable homomorphism to E.

Specifically: Find $E^{\prime}\left(\mathbb{F}_{p}\right) d$-isogenous to E, d small. Defines a degree $\approx d$ rational map $E^{\prime}\left(\mathbb{F}_{p}\right) \rightarrow E\left(\mathbb{F}_{p}\right)$

Then: S-SWU to $E^{\prime}\left(\mathbb{F}_{p}\right)$, isogeny map to $E\left(\mathbb{F}_{p}\right)$.
\checkmark Preserves well-distributedness of S-SWU.

Roadmap

1. Hash functions to elliptic curves
2. Optimizing the map of [BCIMRT10]
3. Evaluation results

Implementation, baselines, setup, method
BLS12-381 defines $\mathbb{G}_{1} \subset E_{1}\left(\mathbb{F}_{p}\right)$ and $\mathbb{G}_{2} \subset E_{2}\left(\mathbb{F}_{p^{2}}\right)$.

Implementation, baselines, setup, method

BLS12-381 defines $\mathbb{G}_{1} \subset E_{1}\left(\mathbb{F}_{p}\right)$ and $\mathbb{G}_{2} \subset E_{2}\left(\mathbb{F}_{p^{2}}\right)$.
For \mathbb{G}_{1} and \mathbb{G}_{2}, we implement:
Maps: hash-and-check; [SW06]; this work
Styles: full bigint; field ops only, non-CT and CT Hashes: non-uniform; uniform
In total: 34 hash variants, 3520 lines of C .

Implementation, baselines, setup, method

BLS12-381 defines $\mathbb{G}_{1} \subset E_{1}\left(\mathbb{F}_{p}\right)$ and $\mathbb{G}_{2} \subset E_{2}\left(\mathbb{F}_{p^{2}}\right)$.
For \mathbb{G}_{1} and \mathbb{G}_{2}, we implement:
Maps: hash-and-check; [SW06]; this work
Styles: full bigint; field ops only, non-CT and CT Hashes: non-uniform; uniform
In total: 34 hash variants, 3520 lines of C .

Implementation, baselines, setup, method

BLS12-381 defines $\mathbb{G}_{1} \subset E_{1}\left(\mathbb{F}_{p}\right)$ and $\mathbb{G}_{2} \subset E_{2}\left(\mathbb{F}_{p^{2}}\right)$.
For \mathbb{G}_{1} and \mathbb{G}_{2}, we implement:
Maps: hash-and-check; [SW06]; this work
Styles: full bigint; field ops only, non-CT and CT Hashes: non-uniform; uniform
In total: 34 hash variants, 3520 lines of C .
Setup: Xeon E3-1535M v6 (no hyperthreading or frequency scaling); Linux 5.2; GCC 9.1.0.

Implementation, baselines, setup, method

BLS12-381 defines $\mathbb{G}_{1} \subset E_{1}\left(\mathbb{F}_{p}\right)$ and $\mathbb{G}_{2} \subset E_{2}\left(\mathbb{F}_{p^{2}}\right)$.
For \mathbb{G}_{1} and \mathbb{G}_{2}, we implement:
Maps: hash-and-check; [SW06]; this work
Styles: full bigint; field ops only, non-CT and CT Hashes: non-uniform; uniform
In total: 34 hash variants, 3520 lines of C .
Setup: Xeon E3-1535M v6 (no hyperthreading or frequency scaling); Linux 5.2; GCC 9.1.0.

Method: run each hash 10^{6} times; record \#cycles.

BLS12-381 \mathbb{G}_{1}, uniform hash function

Recap and conclusion

Contributions:
\checkmark Optimizations to the map of [BCIMRT10]
\checkmark "Indirect" approach to expand applicability
\checkmark Fast impls are simple and constant time

Recap and conclusion

Contributions:
\checkmark Optimizations to the map of [BCIMRT10]
\checkmark "Indirect" approach to expand applicability
\checkmark Fast impls are simple and constant time
Result: hash-to-curve costs 1^{+}exponentiation for essentially any prime-field elliptic curve.

Recap and conclusion

Contributions:
\checkmark Optimizations to the map of [BCIMRT10]
\checkmark "Indirect" approach to expand applicability
\checkmark Fast impls are simple and constant time
Result: hash-to-curve costs 1^{+}exponentiation for essentially any prime-field elliptic curve.
State of the art for BLS, BN, NIST, secp256k1, and other curves not covered by Elligator or Icart.

Recap and conclusion

Contributions:
\checkmark Optimizations to the map of [BCIMRT10]
\checkmark "Indirect" approach to expand applicability
\checkmark Fast impls are simple and constant time
Result: hash-to-curve costs 1^{+}exponentiation for essentially any prime-field elliptic curve.
State of the art for BLS, BN, NIST, secp256k1, and other curves not covered by Elligator or Icart.
https://github.com/kwantam/bls12-381_hash
https://github.com/kwantam/bls_sigs_ref
rsw@cs.stanford.edu

