
Fast and simple constant-time hashing
to the BLS12-381 elliptic curve

(and other curves, too!)

Riad S. Wahby, Dan Boneh

Stanford

August 26th, 2019

Motivation

Why do we need hashes to elliptic curves?

• Our initial motivation: BLS signatures [BLS01]

• Also: VRFs, OPRFs, PAKEs, IBE, . . .

Why simple and constant time?

• Side channels (e.g., Dragonblood [VR19])

• Embedded systems often have fixed-modulus
hardware acceleration but slow generic bigint

Why the BLS12-381 pairing-friendly elliptic curve?

• Widely used curve for ≈120-bit security level

Z ZK proofs, signatures, IBE, ABE, . . .

Motivation

Why do we need hashes to elliptic curves?

• Our initial motivation: BLS signatures [BLS01]

• Also: VRFs, OPRFs, PAKEs, IBE, . . .

Why simple and constant time?

• Side channels (e.g., Dragonblood [VR19])

• Embedded systems often have fixed-modulus
hardware acceleration but slow generic bigint

Why the BLS12-381 pairing-friendly elliptic curve?

• Widely used curve for ≈120-bit security level

Z ZK proofs, signatures, IBE, ABE, . . .

Motivation

Why do we need hashes to elliptic curves?

• Our initial motivation: BLS signatures [BLS01]

• Also: VRFs, OPRFs, PAKEs, IBE, . . .

Why simple and constant time?

• Side channels (e.g., Dragonblood [VR19])

• Embedded systems often have fixed-modulus
hardware acceleration but slow generic bigint

Why the BLS12-381 pairing-friendly elliptic curve?

• Widely used curve for ≈120-bit security level

Z ZK proofs, signatures, IBE, ABE, . . .

Motivation

Why do we need hashes to elliptic curves?

• Our initial motivation: BLS signatures [BLS01]

• Also: VRFs, OPRFs, PAKEs, IBE, . . .

Why simple and constant time?

• Side channels (e.g., Dragonblood [VR19])

• Embedded systems often have fixed-modulus
hardware acceleration but slow generic bigint

Why the BLS12-381 pairing-friendly elliptic curve?

• Widely used curve for ≈120-bit security level

Z ZK proofs, signatures, IBE, ABE, . . .

Motivation

Why do we need hashes to elliptic curves?

• Our initial motivation: BLS signatures [BLS01]

• Also: VRFs, OPRFs, PAKEs, IBE, . . .

Why simple and constant time?

• Side channels (e.g., Dragonblood [VR19])

• Embedded systems often have fixed-modulus
hardware acceleration but slow generic bigint

Why the BLS12-381 pairing-friendly elliptic curve?

• Widely used curve for ≈120-bit security level

Z ZK proofs, signatures, IBE, ABE, . . .

Motivation

Why do we need hashes to elliptic curves?

• Our initial motivation: BLS signatures [BLS01]

• Also: VRFs, OPRFs, PAKEs, IBE, . . .

Why simple and constant time?

fixed-modulus arithmetic only

• Side channels (e.g., Dragonblood [VR19])

• Embedded systems often have fixed-modulus
hardware acceleration but slow generic bigint

Why the BLS12-381 pairing-friendly elliptic curve?

• Widely used curve for ≈120-bit security level

Z ZK proofs, signatures, IBE, ABE, . . .

Motivation

Why do we need hashes to elliptic curves?

• Our initial motivation: BLS signatures [BLS01]

• Also: VRFs, OPRFs, PAKEs, IBE, . . .

Why simple and constant time?

• Side channels (e.g., Dragonblood [VR19])

• Embedded systems often have fixed-modulus
hardware acceleration but slow generic bigint

Why the BLS12-381 pairing-friendly elliptic curve?

• Widely used curve for ≈120-bit security level

Z ZK proofs, signatures, IBE, ABE, . . .

Motivation

Why do we need hashes to elliptic curves?

• Our initial motivation: BLS signatures [BLS01]

• Also: VRFs, OPRFs, PAKEs, IBE, . . .

Why simple and constant time?

• Side channels (e.g., Dragonblood [VR19])

• Embedded systems often have fixed-modulus
hardware acceleration but slow generic bigint

Why the BLS12-381 pairing-friendly elliptic curve?

• Widely used curve for ≈120-bit security level

Z ZK proofs, signatures, IBE, ABE, . . .

Motivation

Why do we need hashes to elliptic curves?

• Our initial motivation: BLS signatures [BLS01]

• Also: VRFs, OPRFs, PAKEs, IBE, . . .

Why simple and constant time?

• Side channels (e.g., Dragonblood [VR19])

• Embedded systems often have fixed-modulus
hardware acceleration but slow generic bigint

Why the BLS12-381 pairing-friendly elliptic curve?

• Widely used curve for ≈120-bit security level

Z ZK proofs, signatures, IBE, ABE, . . .

Our contributions

1. An “indirect” map to pairing-friendly curves
that sidesteps limitations of existing maps

2. An optimization to the map of [BCIMRT10]
that reduces its cost to 1 exponentiation
3 On par with the fastest existing maps
3 Fast impls are simple and constant time
3 Applies to essentially any prime-field curve

3. Impl and eval of 34 hash variants for BLS12-381
3 1.3–2× faster than prior constant-time hashes,
≤ 9% slower than non-CT deterministic hashes

Z Open-source impls in C, Rust, Python, . . .

Our contributions

1. An “indirect” map to pairing-friendly curves
that sidesteps limitations of existing maps

2. An optimization to the map of [BCIMRT10]
that reduces its cost to 1 exponentiation
3 On par with the fastest existing maps

3 Fast impls are simple and constant time
3 Applies to essentially any prime-field curve

3. Impl and eval of 34 hash variants for BLS12-381
3 1.3–2× faster than prior constant-time hashes,
≤ 9% slower than non-CT deterministic hashes

Z Open-source impls in C, Rust, Python, . . .

Our contributions

1. An “indirect” map to pairing-friendly curves
that sidesteps limitations of existing maps

2. An optimization to the map of [BCIMRT10]
that reduces its cost to 1 exponentiation
3 On par with the fastest existing maps
3 Fast impls are simple and constant time

3 Applies to essentially any prime-field curve

3. Impl and eval of 34 hash variants for BLS12-381
3 1.3–2× faster than prior constant-time hashes,
≤ 9% slower than non-CT deterministic hashes

Z Open-source impls in C, Rust, Python, . . .

Our contributions

1. An “indirect” map to pairing-friendly curves
that sidesteps limitations of existing maps

2. An optimization to the map of [BCIMRT10]
that reduces its cost to 1 exponentiation
3 On par with the fastest existing maps
3 Fast impls are simple and constant time
3 Applies to essentially any prime-field curve

3. Impl and eval of 34 hash variants for BLS12-381
3 1.3–2× faster than prior constant-time hashes,
≤ 9% slower than non-CT deterministic hashes

Z Open-source impls in C, Rust, Python, . . .

Our contributions

1. An “indirect” map to pairing-friendly curves
that sidesteps limitations of existing maps

2. An optimization to the map of [BCIMRT10]
that reduces its cost to 1 exponentiation
3 On par with the fastest existing maps
3 Fast impls are simple and constant time
3 Applies to essentially any prime-field curve

3. Impl and eval of 34 hash variants for BLS12-381

3 1.3–2× faster than prior constant-time hashes,
≤ 9% slower than non-CT deterministic hashes

Z Open-source impls in C, Rust, Python, . . .

Our contributions

1. An “indirect” map to pairing-friendly curves
that sidesteps limitations of existing maps

2. An optimization to the map of [BCIMRT10]
that reduces its cost to 1 exponentiation
3 On par with the fastest existing maps
3 Fast impls are simple and constant time
3 Applies to essentially any prime-field curve

3. Impl and eval of 34 hash variants for BLS12-381
3 1.3–2× faster than prior constant-time hashes,
≤ 9% slower than non-CT deterministic hashes

Z Open-source impls in C, Rust, Python, . . .

Our contributions

1. An “indirect” map to pairing-friendly curves
that sidesteps limitations of existing maps

2. An optimization to the map of [BCIMRT10]
that reduces its cost to 1 exponentiation
3 On par with the fastest existing maps
3 Fast impls are simple and constant time
3 Applies to essentially any prime-field curve

3. Impl and eval of 34 hash variants for BLS12-381
3 1.3–2× faster than prior constant-time hashes,
≤ 9% slower than non-CT deterministic hashes

Z Open-source impls in C, Rust, Python, . . .

Roadmap

1. Hash functions to elliptic curves

2. Optimizing the map of [BCIMRT10]

3. Evaluation results

Notation

Fp is the finite field of integers mod a prime p

Hp : {0, 1}? → Fp modeled as a random oracle

, e.g.,

1. Seed a PRG with the input

2. Extract a 2 log p-bit integer

3. Reduce mod p

E (Fp) is the elliptic curve group with identity O
and points {(x , y) : x , y ∈ Fp, y 2 = x3 + ax + b}
Z multiplicative notation

G ⊆ E (Fp) is a subgroup of prime order q.
#E (Fp) = hq; h is the cofactor.

Notation

Fp is the finite field of integers mod a prime p

Hp : {0, 1}? → Fp modeled as a random oracle

, e.g.,

1. Seed a PRG with the input

2. Extract a 2 log p-bit integer

3. Reduce mod p
E (Fp) is the elliptic curve group with identity O
and points {(x , y) : x , y ∈ Fp, y 2 = x3 + ax + b}
Z multiplicative notation

G ⊆ E (Fp) is a subgroup of prime order q.
#E (Fp) = hq; h is the cofactor.

Notation

Fp is the finite field of integers mod a prime p

Hp : {0, 1}? → Fp modeled as a random oracle

, e.g.,

1. Seed a PRG with the input

2. Extract a 2 log p-bit integer

3. Reduce mod p

E (Fp) is the elliptic curve group with identity O
and points {(x , y) : x , y ∈ Fp, y 2 = x3 + ax + b}
Z multiplicative notation

G ⊆ E (Fp) is a subgroup of prime order q.
#E (Fp) = hq; h is the cofactor.

Notation

Fp is the finite field of integers mod a prime p

Hp : {0, 1}? → Fp modeled as a random oracle

, e.g.,

1. Seed a PRG with the input

2. Extract a 2 log p-bit integer

3. Reduce mod p

E (Fp) is the elliptic curve group with identity O
and points {(x , y) : x , y ∈ Fp, y 2 = x3 + ax + b}
Z multiplicative notation

G ⊆ E (Fp) is a subgroup of prime order q.
#E (Fp) = hq; h is the cofactor.

Hash and check

HashToCurveH&C(msg):

ctr← 0
y ← ⊥
while y = ⊥:

x ← Hp(ctr ||msg)
ctr← ctr + 1
ySq ← x3 + ax + b
y ← sqrt(ySq) // ⊥ if ySq is non-square

P ← (x , y)
return Ph // map to G via cofactor mul

Z E (Fp) = {(x , y) : x , y ∈ Fp, y 2 = x3 + ax + b}
Not constant time; “bad” inputs are easy to find.

7

7

Loop a fixed number of times?
Slow; well-meaning “optimization” breaks CT.

Hash and check

HashToCurveH&C(msg):

ctr← 0
y ← ⊥
while y = ⊥:

x ← Hp(ctr ||msg)
ctr← ctr + 1
ySq ← x3 + ax + b
y ← sqrt(ySq) // ⊥ if ySq is non-square

P ← (x , y)
return Ph // map to G via cofactor mul

Z E (Fp) = {(x , y) : x , y ∈ Fp, y 2 = x3 + ax + b}
Not constant time; “bad” inputs are easy to find.

7

7

Loop a fixed number of times?
Slow; well-meaning “optimization” breaks CT.

Hash and check

HashToCurveH&C(msg):

ctr← 0
y ← ⊥
while y = ⊥:

x ← Hp(ctr ||msg)
ctr← ctr + 1
ySq ← x3 + ax + b
y ← sqrt(ySq) // ⊥ if ySq is non-square

P ← (x , y)
return Ph // map to G via cofactor mul

Z E (Fp) = {(x , y) : x , y ∈ Fp, y 2 = x3 + ax + b}

Not constant time; “bad” inputs are easy to find.

7

7

Loop a fixed number of times?
Slow; well-meaning “optimization” breaks CT.

Hash and check

HashToCurveH&C(msg):

ctr← 0
y ← ⊥
while y = ⊥:

x ← Hp(ctr ||msg)
ctr← ctr + 1
ySq ← x3 + ax + b
y ← sqrt(ySq) // ⊥ if ySq is non-square

P ← (x , y)
return Ph // map to G via cofactor mul

Z E (Fp) = {(x , y) : x , y ∈ Fp, y 2 = x3 + ax + b}
Not constant time; “bad” inputs are easy to find.

7

7

Loop a fixed number of times?
Slow; well-meaning “optimization” breaks CT.

Hash and check

HashToCurveH&C(msg):

ctr← 0
y ← ⊥
while y = ⊥:

x ← Hp(ctr ||msg)
ctr← ctr + 1
ySq ← x3 + ax + b
y ← sqrt(ySq) // ⊥ if ySq is non-square

P ← (x , y)
return Ph // map to G via cofactor mul

Z E (Fp) = {(x , y) : x , y ∈ Fp, y 2 = x3 + ax + b}

Not constant time; “bad” inputs are easy to find.

7

7

Loop a fixed number of times?
Slow; well-meaning “optimization” breaks CT.

Hash and check

HashToCurveH&C(msg):

ctr← 0
y ← ⊥
while y = ⊥:

x ← Hp(ctr ||msg)
ctr← ctr + 1
ySq ← x3 + ax + b
y ← sqrt(ySq) // ⊥ if ySq is non-square

P ← (x , y)
return Ph // map to G via cofactor mul

Z E (Fp) = {(x , y) : x , y ∈ Fp, y 2 = x3 + ax + b}

Not constant time; “bad” inputs are easy to find.

7

7

Loop a fixed number of times?

Slow; well-meaning “optimization” breaks CT.

Hash and check

HashToCurveH&C(msg):

ctr← 0
y ← ⊥
while y = ⊥:

x ← Hp(ctr ||msg)
ctr← ctr + 1
ySq ← x3 + ax + b
y ← sqrt(ySq) // ⊥ if ySq is non-square

P ← (x , y)
return Ph // map to G via cofactor mul

Z E (Fp) = {(x , y) : x , y ∈ Fp, y 2 = x3 + ax + b}

Not constant time; “bad” inputs are easy to find.

7
7 Loop a fixed number of times?

Slow; well-meaning “optimization” breaks CT.

Deterministic maps to elliptic curves

M : Fp → E (Fp), where E : y 2 = x3 + ax + b and p > 5:

Map M Restrictions Cost
[BF01]

7

p ≡ 2 mod 3, a = 0 1 exp

[SW06]

3

none 3 exp
SWU [Ulas07]

7

p ≡ 3 mod 4, ab 6= 0 3 exp
[Icart09]

7

p ≡ 2 mod 3 1 exp
S-SWU [BCIMRT10]

7

p ≡ 3 mod 4, ab 6= 0 2 exp
Elligator [BHKL13]

7

b 6= 0, 2 |#E (Fp) 1 exp

This work

7

ab 6= 0 1 exp

3

none 1+ exp

BLS12-381: p ≡ 1 mod 3, a = 0, 2 -#E (Fp)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves

M : Fp → E (Fp), where E : y 2 = x3 + ax + b and p > 5:

Map M Restrictions Cost
[BF01]

7

p ≡ 2 mod 3, a = 0 1 exp

[SW06]

3

none 3 exp
SWU [Ulas07]

7

p ≡ 3 mod 4, ab 6= 0 3 exp
[Icart09]

7

p ≡ 2 mod 3 1 exp
S-SWU [BCIMRT10]

7

p ≡ 3 mod 4, ab 6= 0 2 exp
Elligator [BHKL13]

7

b 6= 0, 2 |#E (Fp) 1 exp

This work

7

ab 6= 0 1 exp

3

none 1+ exp

BLS12-381: p ≡ 1 mod 3, a = 0, 2 -#E (Fp)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves

M : Fp → E (Fp), where E : y 2 = x3 + ax + b and p > 5:

Map M Restrictions Cost
[BF01]

7

p ≡ 2 mod 3, a = 0 1 exp
[SW06]

3

none 3 exp

SWU [Ulas07]

7

p ≡ 3 mod 4, ab 6= 0 3 exp
[Icart09]

7

p ≡ 2 mod 3 1 exp
S-SWU [BCIMRT10]

7

p ≡ 3 mod 4, ab 6= 0 2 exp
Elligator [BHKL13]

7

b 6= 0, 2 |#E (Fp) 1 exp

This work

7

ab 6= 0 1 exp

3

none 1+ exp

BLS12-381: p ≡ 1 mod 3, a = 0, 2 -#E (Fp)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves

M : Fp → E (Fp), where E : y 2 = x3 + ax + b and p > 5:

Map M Restrictions Cost
[BF01]

7

p ≡ 2 mod 3, a = 0 1 exp
[SW06]

3

none 3 exp
SWU [Ulas07]

7

p ≡ 3 mod 4, ab 6= 0 3 exp

[Icart09]

7

p ≡ 2 mod 3 1 exp
S-SWU [BCIMRT10]

7

p ≡ 3 mod 4, ab 6= 0 2 exp
Elligator [BHKL13]

7

b 6= 0, 2 |#E (Fp) 1 exp

This work

7

ab 6= 0 1 exp

3

none 1+ exp

BLS12-381: p ≡ 1 mod 3, a = 0, 2 -#E (Fp)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves

M : Fp → E (Fp), where E : y 2 = x3 + ax + b and p > 5:

Map M Restrictions Cost
[BF01]

7

p ≡ 2 mod 3, a = 0 1 exp
[SW06]

3

none 3 exp
SWU [Ulas07]

7

p ≡ 3 mod 4, ab 6= 0 3 exp
[Icart09]

7

p ≡ 2 mod 3 1 exp

S-SWU [BCIMRT10]

7

p ≡ 3 mod 4, ab 6= 0 2 exp
Elligator [BHKL13]

7

b 6= 0, 2 |#E (Fp) 1 exp

This work

7

ab 6= 0 1 exp

3

none 1+ exp

BLS12-381: p ≡ 1 mod 3, a = 0, 2 -#E (Fp)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves

M : Fp → E (Fp), where E : y 2 = x3 + ax + b and p > 5:

Map M Restrictions Cost
[BF01]

7

p ≡ 2 mod 3, a = 0 1 exp
[SW06]

3

none 3 exp
SWU [Ulas07]

7

p ≡ 3 mod 4, ab 6= 0 3 exp
[Icart09]

7

p ≡ 2 mod 3 1 exp
S-SWU [BCIMRT10]

7

p ≡ 3 mod 4, ab 6= 0 2 exp

Elligator [BHKL13]

7

b 6= 0, 2 |#E (Fp) 1 exp

This work

7

ab 6= 0 1 exp

3

none 1+ exp

BLS12-381: p ≡ 1 mod 3, a = 0, 2 -#E (Fp)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves

M : Fp → E (Fp), where E : y 2 = x3 + ax + b and p > 5:

Map M Restrictions Cost
[BF01]

7

p ≡ 2 mod 3, a = 0 1 exp
[SW06]

3

none 3 exp
SWU [Ulas07]

7

p ≡ 3 mod 4, ab 6= 0 3 exp
[Icart09]

7

p ≡ 2 mod 3 1 exp
S-SWU [BCIMRT10]

7

p ≡ 3 mod 4, ab 6= 0 2 exp
Elligator [BHKL13]

7

b 6= 0, 2 |#E (Fp) 1 exp

This work

7

ab 6= 0 1 exp

3

none 1+ exp

BLS12-381: p ≡ 1 mod 3, a = 0, 2 -#E (Fp)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves

M : Fp → E (Fp), where E : y 2 = x3 + ax + b and p > 5:

Map M Restrictions Cost
[BF01]

7

p ≡ 2 mod 3, a = 0 1 exp
[SW06]

3

none 3 exp
SWU [Ulas07]

7

p ≡ 3 mod 4, ab 6= 0 3 exp
[Icart09]

7

p ≡ 2 mod 3 1 exp
S-SWU [BCIMRT10]

7

p ≡ 3 mod 4, ab 6= 0 2 exp
Elligator [BHKL13]

7

b 6= 0, 2 |#E (Fp) 1 exp

This work

7

ab 6= 0 1 exp

3

none 1+ exp

BLS12-381: p ≡ 1 mod 3, a = 0, 2 -#E (Fp)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves

M : Fp → E (Fp), where E : y 2 = x3 + ax + b and p > 5:

Map M Restrictions Cost
[BF01]

7

p ≡ 2 mod 3, a = 0 1 exp
[SW06]

3

none 3 exp
SWU [Ulas07]

7

p ≡ 3 mod 4, ab 6= 0 3 exp
[Icart09]

7

p ≡ 2 mod 3 1 exp
S-SWU [BCIMRT10]

7

p ≡ 3 mod 4, ab 6= 0 2 exp
Elligator [BHKL13]

7

b 6= 0, 2 |#E (Fp) 1 exp

This work

7

ab 6= 0 1 exp

3

none 1+ exp

BLS12-381: p ≡ 1 mod 3, a = 0, 2 -#E (Fp)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves

M : Fp → E (Fp), where E : y 2 = x3 + ax + b and p > 5:

Map M Restrictions Cost
[BF01]

7

p ≡ 2 mod 3, a = 0 1 exp
[SW06]

3

none 3 exp
SWU [Ulas07]

7

p ≡ 3 mod 4, ab 6= 0 3 exp
[Icart09]

7

p ≡ 2 mod 3 1 exp
S-SWU [BCIMRT10]

7

p ≡ 3 mod 4, ab 6= 0 2 exp
Elligator [BHKL13]

7

b 6= 0, 2 |#E (Fp) 1 exp

This work

7

ab 6= 0 1 exp

3

none 1+ exp

BLS12-381: p ≡ 1 mod 3, a = 0, 2 -#E (Fp)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves

M : Fp → E (Fp), where E : y 2 = x3 + ax + b and p > 5:

Map M Restrictions Cost
[BF01] 7 p ≡ 2 mod 3, a = 0 1 exp
[SW06]

3

none 3 exp
SWU [Ulas07]

7

p ≡ 3 mod 4, ab 6= 0 3 exp
[Icart09] 7 p ≡ 2 mod 3 1 exp

S-SWU [BCIMRT10]

7

p ≡ 3 mod 4, ab 6= 0 2 exp
Elligator [BHKL13]

7

b 6= 0, 2 |#E (Fp) 1 exp

This work

7

ab 6= 0 1 exp

3

none 1+ exp

BLS12-381: p ≡ 1 mod 3, a = 0, 2 -#E (Fp)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves

M : Fp → E (Fp), where E : y 2 = x3 + ax + b and p > 5:

Map M Restrictions Cost
[BF01] 7 p ≡ 2 mod 3, a = 0 1 exp
[SW06]

3

none 3 exp
SWU [Ulas07] 7 p ≡ 3 mod 4, ab 6= 0 3 exp

[Icart09] 7 p ≡ 2 mod 3 1 exp
S-SWU [BCIMRT10] 7 p ≡ 3 mod 4, ab 6= 0 2 exp
Elligator [BHKL13]

7

b 6= 0, 2 |#E (Fp) 1 exp

This work

7

ab 6= 0 1 exp

3

none 1+ exp

BLS12-381: p ≡ 1 mod 3, a = 0, 2 -#E (Fp)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves

M : Fp → E (Fp), where E : y 2 = x3 + ax + b and p > 5:

Map M Restrictions Cost
[BF01] 7 p ≡ 2 mod 3, a = 0 1 exp
[SW06]

3

none 3 exp
SWU [Ulas07] 7 p ≡ 3 mod 4, ab 6= 0 3 exp

[Icart09] 7 p ≡ 2 mod 3 1 exp
S-SWU [BCIMRT10] 7 p ≡ 3 mod 4, ab 6= 0 2 exp
Elligator [BHKL13] 7 b 6= 0, 2 |#E (Fp) 1 exp

This work

7

ab 6= 0 1 exp

3

none 1+ exp

BLS12-381: p ≡ 1 mod 3, a = 0, 2 -#E (Fp)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves

M : Fp → E (Fp), where E : y 2 = x3 + ax + b and p > 5:

Map M Restrictions Cost
[BF01] 7 p ≡ 2 mod 3, a = 0 1 exp
[SW06] 3 none 3 exp

SWU [Ulas07] 7 p ≡ 3 mod 4, ab 6= 0 3 exp
[Icart09] 7 p ≡ 2 mod 3 1 exp

S-SWU [BCIMRT10] 7 p ≡ 3 mod 4, ab 6= 0 2 exp
Elligator [BHKL13] 7 b 6= 0, 2 |#E (Fp) 1 exp

This work

7

ab 6= 0 1 exp

3

none 1+ exp

BLS12-381: p ≡ 1 mod 3, a = 0, 2 -#E (Fp)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves

M : Fp → E (Fp), where E : y 2 = x3 + ax + b and p > 5:

Map M Restrictions Cost
[BF01] 7 p ≡ 2 mod 3, a = 0 1 exp
[SW06] 3 none 3 exp

SWU [Ulas07] 7 p ≡ 3 mod 4, ab 6= 0 3 exp
[Icart09] 7 p ≡ 2 mod 3 1 exp

S-SWU [BCIMRT10] 7 p ≡ 3 mod 4, ab 6= 0 2 exp
Elligator [BHKL13] 7 b 6= 0, 2 |#E (Fp) 1 exp

This work 7 ab 6= 0 1 exp
3 none 1+ exp

BLS12-381: p ≡ 1 mod 3, a = 0, 2 -#E (Fp)

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

Hash functions from deterministic maps

Compose Hp and M in a natural way:

HashToCurveNU(msg) :

t ← Hp(msg) // {0, 1}? → Fp

P ← M(t) // Fp → E (Fp)

return Ph // E (Fp)→ G

Possible issue: M is not a bijection: #E (Fp) 6= p
Z output distribution is nonuniform

This could be OK—but what if we need uniformity?

Hash functions from deterministic maps

Compose Hp and M in a natural way:

HashToCurveNU(msg) :

t ← Hp(msg) // {0, 1}? → Fp

P ← M(t) // Fp → E (Fp)

return Ph // E (Fp)→ G

Possible issue: M is not a bijection: #E (Fp) 6= p
Z output distribution is nonuniform

This could be OK—but what if we need uniformity?

Hash functions from deterministic maps

Compose Hp and M in a natural way:

HashToCurveNU(msg) :

t ← Hp(msg) // {0, 1}? → Fp

P ← M(t) // Fp → E (Fp)

return Ph // E (Fp)→ G

Possible issue: M is not a bijection: #E (Fp) 6= p
Z output distribution is nonuniform

This could be OK—but what if we need uniformity?

Hash functions from deterministic maps

Compose Hp and M in a natural way:

HashToCurveNU(msg) :

t ← Hp(msg) // {0, 1}? → Fp

P ← M(t) // Fp → E (Fp)

return Ph // E (Fp)→ G

Possible issue: M is not a bijection: #E (Fp) 6= p
Z output distribution is nonuniform

This could be OK—but what if we need uniformity?

Hash functions from deterministic maps

Compose Hp and M in a natural way:

HashToCurveNU(msg) :

t ← Hp(msg) // {0, 1}? → Fp

P ← M(t) // Fp → E (Fp)

return Ph // E (Fp)→ G

Possible issue: M is not a bijection: #E (Fp) 6= p
Z output distribution is nonuniform

This could be OK—but what if we need uniformity?

Hash functions from deterministic maps

Compose Hp and M in a natural way:

HashToCurveNU(msg) :

t ← Hp(msg) // {0, 1}? → Fp

P ← M(t) // Fp → E (Fp)

return Ph // E (Fp)→ G

Possible issue: M is not a bijection: #E (Fp) 6= p
Z output distribution is nonuniform

This could be OK—but what if we need uniformity?

Uniform hashing from deterministic maps

For uniformity [BCIMRT10,FFSTV13]:

HashToCurve(msg) :

P1 ← M(Hp(0 ||msg))

P2 ← M(Hp(1 ||msg))

P ← P1 · P2

return Ph

Z M needs to be well distributed: “not too lumpy”
3 All of the M we’ve seen are well distributed.

Z HashToCurve is indifferentiable from RO [MRH05]

Uniform hashing from deterministic maps

For uniformity [BCIMRT10,FFSTV13]:

HashToCurve(msg) :

P1 ← M(Hp(0 ||msg))

P2 ← M(Hp(1 ||msg))

P ← P1 · P2

return Ph

Z M needs to be well distributed: “not too lumpy”
3 All of the M we’ve seen are well distributed.

Z HashToCurve is indifferentiable from RO [MRH05]

Uniform hashing from deterministic maps

For uniformity [BCIMRT10,FFSTV13]:

HashToCurve(msg) :

P1 ← M(Hp(0 ||msg))

P2 ← M(Hp(1 ||msg))

P ← P1 · P2

return Ph

Z M needs to be well distributed: “not too lumpy”
3 All of the M we’ve seen are well distributed.

Z HashToCurve is indifferentiable from RO [MRH05]

Roadmap

1. Hash functions to elliptic curves

2. Optimizing the map of [BCIMRT10]

3. Evaluation results

The Simplified SWU map [BCIMRT10]

E : y 2 = f (x) = x3 + ax + b, ab 6= 0.

Idea: pick x s.t. f (ux) = u3f (x).
Z For u non-square ∈ Fp, f (x) or f (ux) is square.

u3x3 + aux + b = u3(x3 + ax + b)

∴ x = −b
a

(
1 +

1

u2 + u

)

Z If p ≡ 3 mod 4, u = −t2 is non-square, so:

X0(t) , −b
a

(
1 +

1

t4 − t2

)
X1(t) , −t2X0(t)

The Simplified SWU map [BCIMRT10]

E : y 2 = f (x) = x3 + ax + b, ab 6= 0.

Idea: pick x s.t. f (ux) = u3f (x).
Z For u non-square ∈ Fp, f (x) or f (ux) is square.

u3x3 + aux + b = u3(x3 + ax + b)

∴ x = −b
a

(
1 +

1

u2 + u

)

Z If p ≡ 3 mod 4, u = −t2 is non-square, so:

X0(t) , −b
a

(
1 +

1

t4 − t2

)
X1(t) , −t2X0(t)

The Simplified SWU map [BCIMRT10]

E : y 2 = f (x) = x3 + ax + b, ab 6= 0.

Idea: pick x s.t. f (ux) = u3f (x).
Z For u non-square ∈ Fp, f (x) or f (ux) is square.

u3x3 + aux + b = u3(x3 + ax + b)

∴ x = −b
a

(
1 +

1

u2 + u

)

Z If p ≡ 3 mod 4, u = −t2 is non-square

, so:

X0(t) , −b
a

(
1 +

1

t4 − t2

)
X1(t) , −t2X0(t)

The Simplified SWU map [BCIMRT10]

E : y 2 = f (x) = x3 + ax + b, ab 6= 0.

Idea: pick x s.t. f (ux) = u3f (x).
Z For u non-square ∈ Fp, f (x) or f (ux) is square.

u3x3 + aux + b = u3(x3 + ax + b)

∴ x = −b
a

(
1 +

1

u2 + u

)

Z If p ≡ 3 mod 4, u = −t2 is non-square, so:

X0(t) , −b
a

(
1 +

1

t4 − t2

)
X1(t) , −t2X0(t)

Evaluating the S-SWU map

S-SWU(t) ,
{

(X0(t),
√
f (X0(t))) if f (X0(t)) is square

(X1(t),
√
f (X1(t))) otherwise

Attempt #1 (assume p ≡ 3 mod 4):

x0 ← X0(t)

y0 ← f (x0)
p+1
4 // 7 expensive

x1 ← −t2x0 // a.k.a. X1(t)

y1 ← f (x1)
p+1
4 // 7 expensive

if y 20 = f (x0): return (x0, y0)

else: return (x1, y1)

Requires two exponentiations! Can we do better?

Evaluating the S-SWU map

S-SWU(t) ,
{

(X0(t),
√
f (X0(t))) if f (X0(t)) is square

(X1(t),
√
f (X1(t))) otherwise

Attempt #1 (assume p ≡ 3 mod 4):

x0 ← X0(t)

y0 ← f (x0)
p+1
4 // 7 expensive

x1 ← −t2x0 // a.k.a. X1(t)

y1 ← f (x1)
p+1
4 // 7 expensive

if y 20 = f (x0): return (x0, y0)

else: return (x1, y1)

Requires two exponentiations! Can we do better?

Evaluating the S-SWU map

S-SWU(t) ,
{

(X0(t),
√
f (X0(t))) if f (X0(t)) is square

(X1(t),
√
f (X1(t))) otherwise

Attempt #1 (assume p ≡ 3 mod 4):

x0 ← X0(t)

y0 ← f (x0)
p+1
4 // 7 expensive

x1 ← −t2x0 // a.k.a. X1(t)

y1 ← f (x1)
p+1
4 // 7 expensive

if y 20 = f (x0): return (x0, y0)

else: return (x1, y1)

Requires two exponentiations! Can we do better?

Evaluating the S-SWU map

S-SWU(t) ,
{

(X0(t),
√
f (X0(t))) if f (X0(t)) is square

(X1(t),
√
f (X1(t))) otherwise

Attempt #1 (assume p ≡ 3 mod 4):

x0 ← X0(t)

y0 ← f (x0)
p+1
4 // 7 expensive

x1 ← −t2x0 // a.k.a. X1(t)

y1 ← f (x1)
p+1
4 // 7 expensive

if y 20 = f (x0): return (x0, y0)

else: return (x1, y1)

Requires two exponentiations! Can we do better?

Evaluating the S-SWU map

S-SWU(t) ,
{

(X0(t),
√
f (X0(t))) if f (X0(t)) is square

(X1(t),
√
f (X1(t))) otherwise

Attempt #1 (assume p ≡ 3 mod 4):

x0 ← X0(t)

y0 ← f (x0)
p+1
4 // 7 expensive

x1 ← −t2x0 // a.k.a. X1(t)

y1 ← f (x1)
p+1
4 // 7 expensive

if y 20 = f (x0): return (x0, y0)

else: return (x1, y1)

Requires two exponentiations! Can we do better?

Eliminating an exponentiation

Recall: f (x1) = −t6f (x0). So:

f (x1)
p+1
4 =

(
−t6f (x0)

) p+1
4

= t3 (−f (x0))
p+1
4 = t3

√
−f (x0)

Z We have f (x0)
p+1
4 . Can we use this?

(
f (x0)

p+1
4

)2
= f (x0)

p+1
2 = f (x0) · f (x0)

p−1
2

= −f (x0) if f (x0) is non-square

3 f (x0)
p+1
4 is

√
−f (x0) when f (x0) is non-square!

Legendre symbol!

Eliminating an exponentiation

Recall: f (x1) = −t6f (x0). So:

f (x1)
p+1
4 =

(
−t6f (x0)

) p+1
4

= t3 (−f (x0))
p+1
4 = t3

√
−f (x0)

Z We have f (x0)
p+1
4 . Can we use this?

(
f (x0)

p+1
4

)2
= f (x0)

p+1
2 = f (x0) · f (x0)

p−1
2

= −f (x0) if f (x0) is non-square

3 f (x0)
p+1
4 is

√
−f (x0) when f (x0) is non-square!

Legendre symbol!

Eliminating an exponentiation

Recall: f (x1) = −t6f (x0). So:

f (x1)
p+1
4 =

(
−t6f (x0)

) p+1
4

= t3 (−f (x0))
p+1
4 = t3

√
−f (x0)

Z We have f (x0)
p+1
4 . Can we use this?

(
f (x0)

p+1
4

)2
= f (x0)

p+1
2 = f (x0) · f (x0)

p−1
2

= −f (x0) if f (x0) is non-square

3 f (x0)
p+1
4 is

√
−f (x0) when f (x0) is non-square!

Legendre symbol!

Eliminating an exponentiation

Recall: f (x1) = −t6f (x0). So:

f (x1)
p+1
4 =

(
−t6f (x0)

) p+1
4

= t3 (−f (x0))
p+1
4 = t3

√
−f (x0)

Z We have f (x0)
p+1
4 . Can we use this?

(
f (x0)

p+1
4

)2
= f (x0)

p+1
2 = f (x0) · f (x0)

p−1
2

= −f (x0) if f (x0) is non-square

3 f (x0)
p+1
4 is

√
−f (x0) when f (x0) is non-square!

Legendre symbol!

Eliminating an exponentiation

Recall: f (x1) = −t6f (x0). So:

f (x1)
p+1
4 =

(
−t6f (x0)

) p+1
4

= t3 (−f (x0))
p+1
4 = t3

√
−f (x0)

Z We have f (x0)
p+1
4 . Can we use this?

(
f (x0)

p+1
4

)2
= f (x0)

p+1
2 = f (x0) · f (x0)

p−1
2

= −f (x0) if f (x0) is non-square

3 f (x0)
p+1
4 is

√
−f (x0) when f (x0) is non-square!

Legendre symbol!

Eliminating an exponentiation

Recall: f (x1) = −t6f (x0). So:

f (x1)
p+1
4 =

(
−t6f (x0)

) p+1
4

= t3 (−f (x0))
p+1
4 = t3

√
−f (x0)

Z We have f (x0)
p+1
4 . Can we use this?

(
f (x0)

p+1
4

)2
= f (x0)

p+1
2 = f (x0) · f (x0)

p−1
2

= −f (x0) if f (x0) is non-square

3 f (x0)
p+1
4 is

√
−f (x0) when f (x0) is non-square!

Legendre symbol!

Evaluating the S-SWU map—faster!

Attempt #2 (assume p ≡ 3 mod 4):

x0 ← X0(t)

y0 ← f (x0)(p+1)/4 // 7 expensive

x1 ← −t2x0 // a.k.a. X1(t)

y1 ← t3y0 // 3 cheap!

if y 20 = f (x0): return (x0, y0)

else: return (x1, y1)

3 Prior work [BDLSY12] lets us avoid inversions.

3 Straightforward to generalize to p ≡ 1 mod 4.

Evaluating the S-SWU map—faster!

Attempt #2 (assume p ≡ 3 mod 4):

x0 ← X0(t)

y0 ← f (x0)(p+1)/4 // 7 expensive

x1 ← −t2x0 // a.k.a. X1(t)

y1 ← t3y0 // 3 cheap!

if y 20 = f (x0): return (x0, y0)

else: return (x1, y1)

3 Prior work [BDLSY12] lets us avoid inversions.

3 Straightforward to generalize to p ≡ 1 mod 4.

Evaluating the S-SWU map—faster!

Attempt #2 (assume p ≡ 3 mod 4):

x0 ← X0(t)

y0 ← f (x0)(p+1)/4 // 7 expensive

x1 ← −t2x0 // a.k.a. X1(t)

y1 ← t3y0 // 3 cheap!

if y 20 = f (x0): return (x0, y0)

else: return (x1, y1)

3 Prior work [BDLSY12] lets us avoid inversions.

3 Straightforward to generalize to p ≡ 1 mod 4.

Supporting BLS12-381: the ab = 0 case

Issue: S-SWU still does not work with ab = 0.
Z Rules out pairing-friendly curves [BLS03,BN06,. . .]

Idea: map to a curve E ′ having ab 6= 0 and an
efficiently-computable homomorphism to E .

Specifically: Find E ′(Fp) d-isogenous to E , d small.
Z Defines a degree ≈d rational map E ′(Fp)→ E (Fp)

Then: S-SWU to E ′(Fp), isogeny map to E (Fp).
3 Preserves well-distributedness of S-SWU.

Supporting BLS12-381: the ab = 0 case

Issue: S-SWU still does not work with ab = 0.
Z Rules out pairing-friendly curves [BLS03,BN06,. . .]

Idea: map to a curve E ′ having ab 6= 0 and an
efficiently-computable homomorphism to E .

Specifically: Find E ′(Fp) d-isogenous to E , d small.
Z Defines a degree ≈d rational map E ′(Fp)→ E (Fp)

Then: S-SWU to E ′(Fp), isogeny map to E (Fp).
3 Preserves well-distributedness of S-SWU.

Supporting BLS12-381: the ab = 0 case

Issue: S-SWU still does not work with ab = 0.
Z Rules out pairing-friendly curves [BLS03,BN06,. . .]

Idea: map to a curve E ′ having ab 6= 0 and an
efficiently-computable homomorphism to E .

Specifically: Find E ′(Fp) d-isogenous to E , d small.
Z Defines a degree ≈d rational map E ′(Fp)→ E (Fp)

Then: S-SWU to E ′(Fp), isogeny map to E (Fp).
3 Preserves well-distributedness of S-SWU.

Supporting BLS12-381: the ab = 0 case

Issue: S-SWU still does not work with ab = 0.
Z Rules out pairing-friendly curves [BLS03,BN06,. . .]

Idea: map to a curve E ′ having ab 6= 0 and an
efficiently-computable homomorphism to E .

Specifically: Find E ′(Fp) d-isogenous to E , d small.
Z Defines a degree ≈d rational map E ′(Fp)→ E (Fp)

Then: S-SWU to E ′(Fp), isogeny map to E (Fp).
3 Preserves well-distributedness of S-SWU.

Roadmap

1. Hash functions to elliptic curves

2. Optimizing the map of [BCIMRT10]

3. Evaluation results

Implementation, baselines, setup, method

BLS12-381 defines G1 ⊂ E1(Fp) and G2 ⊂ E2(Fp2).

For G1 and G2, we implement:

Maps: hash-and-check; [SW06]; this work

Styles: full bigint; field ops only, non-CT and CT

Hashes: non-uniform; uniform

In total: 34 hash variants, 3520 lines of C.

Setup: Xeon E3-1535M v6 (no hyperthreading or
frequency scaling); Linux 5.2; GCC 9.1.0.

Method: run each hash 106 times; record #cycles.

Implementation, baselines, setup, method

BLS12-381 defines G1 ⊂ E1(Fp) and G2 ⊂ E2(Fp2).

For G1 and G2, we implement:

Maps: hash-and-check; [SW06]; this work

Styles: full bigint; field ops only, non-CT and CT

Hashes: non-uniform; uniform

In total: 34 hash variants, 3520 lines of C.

Setup: Xeon E3-1535M v6 (no hyperthreading or
frequency scaling); Linux 5.2; GCC 9.1.0.

Method: run each hash 106 times; record #cycles.

Implementation, baselines, setup, method

BLS12-381 defines G1 ⊂ E1(Fp) and G2 ⊂ E2(Fp2).

For G1 and G2, we implement:

Maps: hash-and-check; [SW06]; this work

Styles: full bigint; field ops only, non-CT and CT

Hashes: non-uniform; uniform

In total: 34 hash variants, 3520 lines of C.

Setup: Xeon E3-1535M v6 (no hyperthreading or
frequency scaling); Linux 5.2; GCC 9.1.0.

Method: run each hash 106 times; record #cycles.

Implementation, baselines, setup, method

BLS12-381 defines G1 ⊂ E1(Fp) and G2 ⊂ E2(Fp2).

For G1 and G2, we implement:

Maps: hash-and-check; [SW06]; this work

Styles: full bigint; field ops only, non-CT and CT

Hashes: non-uniform; uniform

In total: 34 hash variants, 3520 lines of C.

Setup: Xeon E3-1535M v6 (no hyperthreading or
frequency scaling); Linux 5.2; GCC 9.1.0.

Method: run each hash 106 times; record #cycles.

Implementation, baselines, setup, method

BLS12-381 defines G1 ⊂ E1(Fp) and G2 ⊂ E2(Fp2).

For G1 and G2, we implement:

Maps: hash-and-check; [SW06]; this work

Styles: full bigint; field ops only, non-CT and CT

Hashes: non-uniform; uniform

In total: 34 hash variants, 3520 lines of C.

Setup: Xeon E3-1535M v6 (no hyperthreading or
frequency scaling); Linux 5.2; GCC 9.1.0.

Method: run each hash 106 times; record #cycles.

BLS12-381 G1, uniform hash function

H&C H&C
(worst 10%)

SW This work
0

200

400

600

800

1000
tim

e,
 k

Cy
cle

s (
lo

we
r i

s b
et

te
r)

319 348
459

389

712

564
456

965

496

Full bigint
Field ops (non-CT)
Field ops (CT)

Recap and conclusion

Contributions:

3 Optimizations to the map of [BCIMRT10]

3 “Indirect” approach to expand applicability

3 Fast impls are simple and constant time

Result: hash-to-curve costs 1+ exponentiation for
essentially any prime-field elliptic curve.

Z State of the art for BLS, BN, NIST, secp256k1,
and other curves not covered by Elligator or Icart.

https://github.com/kwantam/bls12-381_hash
https://github.com/kwantam/bls_sigs_ref
rsw@cs.stanford.edu

Recap and conclusion

Contributions:

3 Optimizations to the map of [BCIMRT10]

3 “Indirect” approach to expand applicability

3 Fast impls are simple and constant time

Result: hash-to-curve costs 1+ exponentiation for
essentially any prime-field elliptic curve.

Z State of the art for BLS, BN, NIST, secp256k1,
and other curves not covered by Elligator or Icart.

https://github.com/kwantam/bls12-381_hash
https://github.com/kwantam/bls_sigs_ref
rsw@cs.stanford.edu

Recap and conclusion

Contributions:

3 Optimizations to the map of [BCIMRT10]

3 “Indirect” approach to expand applicability

3 Fast impls are simple and constant time

Result: hash-to-curve costs 1+ exponentiation for
essentially any prime-field elliptic curve.

Z State of the art for BLS, BN, NIST, secp256k1,
and other curves not covered by Elligator or Icart.

https://github.com/kwantam/bls12-381_hash
https://github.com/kwantam/bls_sigs_ref
rsw@cs.stanford.edu

Recap and conclusion

Contributions:

3 Optimizations to the map of [BCIMRT10]

3 “Indirect” approach to expand applicability

3 Fast impls are simple and constant time

Result: hash-to-curve costs 1+ exponentiation for
essentially any prime-field elliptic curve.

Z State of the art for BLS, BN, NIST, secp256k1,
and other curves not covered by Elligator or Icart.

https://github.com/kwantam/bls12-381_hash
https://github.com/kwantam/bls_sigs_ref
rsw@cs.stanford.edu

