Fast and simple constant-time hashing

 to the BLS12-381 elliptic curve(and other curves, too!)

Riad S. Wahby, Dan Boneh

Stanford

December $3^{\text {rd }}, 2019$

Motivation

Our initial motivation: BLS signatures [BLS01]

Motivation

Our initial motivation: BLS signatures [BLS01] - Also: VRFs, OPRFs, PAKEs, IBE, ...

Motivation

Our initial motivation: BLS signatures [BLS01]

- Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?

Motivation

Our initial motivation: BLS signatures [BLS01]

- Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?

- Avoids side channels (e.g. Dragonblood [VR19]), without requiring randomized blinding

Motivation

Our initial motivation: BLS signatures [BLS01]

- Also: VRFs, fixed-modulus arithmetic only

Why simple) and constant time?

- Avoids side channels (e.g. Dragonblood [VR19]), without requiring randomized blinding

Motivation

Our initial motivation: BLS signatures [BLS01]

- Also: VRFs, fixed-modulus arithmetic only

Why simple and constant time?

- Avoids side channels (e.g. Dragonblood [VR19]), without requiring randomized blinding
- Fixed modulus: an order of magnitude less code

Motivation

Our initial motivation: BLS signatures [BLS01]

- Also: VRFs,

fixed-modulus arithmetic only

Why simple and constant time?

- Avoids side channels (e.g. Dragonblood [VR19]), without requiring randomized blinding
- Fixed modulus: an order of magnitude less code
- Embedded systems often have fixed-modulus hardware acceleration but slow generic bigint

Motivation

Our initial motivation: BLS signatures [BLS01]

- Also: VRFs, OPRFs, PAKEs, IBE, ...

Why simple and constant time?

- Avoids side channels (e.g. Dragonblood [VR19]), without requiring randomized blinding
- Fixed modulus: an order of magnitude less code
- Embedded systems often have fixed-modulus hardware acceleration but slow generic bigint

Why the BLS12-381 pairing-friendly elliptic curve?

- Widely used curve for ≈ 120-bit security level Will (probably) be an IETF standard soon

Our contributions

1. "Indirect" maps via isogenies, sidestepping limitations of existing maps when $j \in\{0,1728\}$ (Recall: pairing-friendly curves often have $j=0$)

Our contributions

1. "Indirect" maps via isogenies, sidestepping limitations of existing maps when $j \in\{0,1728\}$ (Recall: pairing-friendly curves often have $j=0$)
2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation \checkmark On par with the fastest existing maps

Our contributions

1. "Indirect" maps via isogenies, sidestepping limitations of existing maps when $j \in\{0,1728\}$ (Recall: pairing-friendly curves often have $j=0$)
2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation \checkmark On par with the fastest existing maps \checkmark Fast impls are simple and constant time

Our contributions

1. "Indirect" maps via isogenies, sidestepping limitations of existing maps when $j \in\{0,1728\}$ (Recall: pairing-friendly curves often have $j=0$)
2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation \checkmark On par with the fastest existing maps \checkmark Fast impls are simple and constant time \checkmark Applies to essentially any elliptic curve

Our contributions

1. "Indirect" maps via isogenies, sidestepping limitations of existing maps when $j \in\{0,1728\}$ (Recall: pairing-friendly curves often have $j=0$)
2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation \checkmark On par with the fastest existing maps \checkmark Fast impls are simple and constant time \checkmark Applies to essentially any elliptic curve
3. Impl and eval of 34 hash variants for BLS12-381

Our contributions

1. "Indirect" maps via isogenies, sidestepping limitations of existing maps when $j \in\{0,1728\}$ (Recall: pairing-friendly curves often have $j=0$)
2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation \checkmark On par with the fastest existing maps \checkmark Fast impls are simple and constant time \checkmark Applies to essentially any elliptic curve
3. Impl and eval of 34 hash variants for BLS12-381 $\checkmark 1.3-2 \times$ faster than prior constant-time hashes, $\leq 9 \%$ slower than non-CT deterministic maps

Our contributions

1. "Indirect" maps via isogenies, sidestepping limitations of existing maps when $j \in\{0,1728\}$ (Recall: pairing-friendly curves often have $j=0$)
2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation \checkmark On par with the fastest existing maps \checkmark Fast impls are simple and constant time \checkmark Applies to essentially any elliptic curve
3. Impl and eval of 34 hash variants for BLS12-381 $\checkmark 1.3-2 \times$ faster than prior constant-time hashes, $\leq 9 \%$ slower than non-CT deterministic maps Open-source impls in C, Rust, Python, ...

Roadmap

1. Hash functions to elliptic curves
2. Optimizing the map of [BCIMRT10]
3. Evaluation results
4. IETF standardization efforts

Notation

$$
H_{p}:\{0,1\}^{\star} \rightarrow \mathbb{F}_{p} \text { and } H_{q}:\{0,1\}^{\star} \rightarrow \mathbb{F}_{q} \text { are hash }
$$

functions modeled as random oracles

Notation

$H_{p}:\{0,1\}^{\star} \rightarrow \mathbb{F}_{p}$ and $H_{q}:\{0,1\}^{\star} \rightarrow \mathbb{F}_{q}$ are hash
functions modeled as random oracles, e.g.,

1. Seed a PRG with the input
2. Extract a $2 \log p$-bit integer
3. Reduce $\bmod p$

Notation

$H_{p}:\{0,1\}^{\star} \rightarrow \mathbb{F}_{p}$ and $H_{q}:\{0,1\}^{\star} \rightarrow \mathbb{F}_{q}$ are hash functions modeled as random oracles
$E\left(\mathbb{F}_{p}\right)$ is the elliptic curve group with identity \mathcal{O} and points $\left\{(x, y): x, y \in \mathbb{F}_{p}, y^{2}=x^{3}+a x+b\right\}$
additive notation, $[\alpha] P$ for scalar multiplication

Notation

$H_{p}:\{0,1\}^{\star} \rightarrow \mathbb{F}_{p}$ and $H_{q}:\{0,1\}^{\star} \rightarrow \mathbb{F}_{q}$ are hash functions modeled as random oracles
$E\left(\mathbb{F}_{p}\right)$ is the elliptic curve group with identity \mathcal{O} and points $\left\{(x, y): x, y \in \mathbb{F}_{p}, y^{2}=x^{3}+a x+b\right\}$
additive notation, $[\alpha] P$ for scalar multiplication
$\mathbb{G} \subseteq E\left(\mathbb{F}_{p}\right)$ is a subgroup of prime order q. $\# E\left(\mathbb{F}_{p}\right)=h q ; h$ is the cofactor.

Notation

$H_{p}:\{0,1\}^{\star} \rightarrow \mathbb{F}_{p}$ and $H_{q}:\{0,1\}^{\star} \rightarrow \mathbb{F}_{q}$ are hash functions modeled as random oracles
$E\left(\mathbb{F}_{p}\right)$ is the elliptic curve group with identity \mathcal{O} and points $\left\{(x, y): x, y \in \mathbb{F}_{p}, y^{2}=x^{3}+a x+b\right\}$
additive notation, $[\alpha] P$ for scalar multiplication
$\mathbb{G} \subseteq E\left(\mathbb{F}_{p}\right)$ is a subgroup of prime order q. $\# E\left(\mathbb{F}_{p}\right)=h q ; h$ is the cofactor.

BLS12-381 defines $\mathbb{G}_{1} \subset E_{1}\left(\mathbb{F}_{p}\right), \mathbb{G}_{2} \subset E_{2}\left(\mathbb{F}_{p^{2}}\right)$, $\mathbb{G}_{T} \subset \mathbb{F}_{p^{12}}^{\times}$, and $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$ s.t.

$$
e\left([\alpha] P_{1},[\beta] P_{2}\right)=e\left(P_{1}, P_{2}\right)^{\alpha \cdot \beta} \quad \alpha, \beta \in \mathbb{F}_{q}
$$

Attempt \#1: random scalar

For some distinguished point $\hat{P} \in \mathbb{G}$,
HashToCurve ${ }_{\text {RS }}$ (msg):
$x \leftarrow H_{q}(\mathrm{msg})$
return $[x] \hat{P}$

Attempt \#1: random scalar

For some distinguished point $\hat{P} \in \mathbb{G}$,
HashToCurve ${ }_{\text {RS }}$ (msg):
$x \leftarrow H_{q}(\mathrm{msg})$
return $[x] \hat{P}$

Informally: need a point with unknown discrete log known dlog breaks security of most protocols (e.g., BLS signatures)

BLS signatures

For $H:\{0,1\}^{\star} \rightarrow \mathbb{G}_{1}, \hat{Q} \in \mathbb{G}_{2}:$
KeyGen() \rightarrow (pk, sk):
$r \leftarrow^{R} \mathbb{Z}_{q} ;$ return $([r] \hat{Q}, r)$

BLS signatures

For $H:\{0,1\}^{\star} \rightarrow \mathbb{G}_{1}, \hat{Q} \in \mathbb{G}_{2}$:
KeyGen() \rightarrow (pk, sk):

$$
r \stackrel{\mathbb{R}}{ }^{\mathbb{Z}_{q}} ; \text { return }([r] \hat{Q}, r)
$$

Sign $(s k, m s g) \rightarrow$ sig: return $[s k] H(\mathrm{msg})$

BLS signatures

For $H:\{0,1\}^{\star} \rightarrow \mathbb{G}_{1}, \hat{Q} \in \mathbb{G}_{2}:$
KeyGen ()$\rightarrow(p k, s k):$
$r \stackrel{R}{\leftarrow} \mathbb{Z}_{q} ;$ return $([r] \hat{Q}, r)$
Sign $(s k, m s g) \rightarrow$ sig: return $[s k] H(\mathrm{msg})$
$\operatorname{Verify}(p k$, msg, sig $) \rightarrow\{$ True, False $\}:$

$$
e(H(\mathrm{msg}), p k) \stackrel{?}{=} e(\mathrm{sig}, \hat{Q})
$$

BLS signatures and HashToCurve ${ }_{\text {RS }}$

For HashToCurve ${ }_{R S}:\{0,1\}^{\star} \rightarrow \mathbb{G}_{1}, \hat{Q} \in \mathbb{G}_{2}$:
KeyGen ()$\rightarrow(p k, s k):$
$r \stackrel{R}{\leftarrow} \mathbb{Z}_{q} ;$ return $([r] \hat{Q}, r)$
Sign(sk, msg) \rightarrow sig: return [sk]HashToCurve ${ }_{\text {RS }}$ (msg)

Verify ($p k$, msg, sig) $\rightarrow\{$ True, False $\}:$ $e\left(\right.$ HashToCurve $\left._{\text {RS }}(\mathrm{msg}), p k\right) \stackrel{?}{=} e(\mathrm{sig}, \hat{Q})$

$$
\operatorname{sig}_{1}=\operatorname{Sign}\left(s k, \operatorname{msg}_{1}\right)=\left[s k \cdot H_{q}\left(\operatorname{msg}_{1}\right)\right] \hat{P}
$$

BLS signatures and HashToCurve ${ }_{\text {RS }}$

For HashToCurve ${ }_{R S}:\{0,1\}^{\star} \rightarrow \mathbb{G}_{1}, \hat{Q} \in \mathbb{G}_{2}$:
KeyGen ()$\rightarrow(p k, s k):$
$r \stackrel{R}{\leftarrow} \mathbb{Z}_{q} ;$ return $([r] \hat{Q}, r)$
Sign(sk, msg) \rightarrow sig: return [sk]HashToCurve ${ }_{\text {RS }}$ (msg)

Verify ($p k$, msg, sig) $\rightarrow\{$ True, False $\}:$
$e\left(\right.$ HashToCurve $\left._{\text {RS }}(\mathrm{msg}), p k\right) \stackrel{?}{=} e(\mathrm{sig}, \hat{Q})$

$$
\operatorname{sig}_{1}=\operatorname{Sign}\left(s k, \operatorname{msg}_{1}\right)=\left[s k \cdot H_{q}\left(\operatorname{msg}_{1}\right)\right] \hat{P}
$$

Trivial existential forgery:

$$
\operatorname{Sign}\left(s k, \operatorname{msg}_{2}\right)=\left[H_{q}\left(\operatorname{msg}_{2}\right) \cdot H_{q}\left(\operatorname{msg}_{1}\right)^{-1}\right] \operatorname{sig}_{1}
$$

Attempt \#2: hash and check HashToCurve $_{H \& C}(\mathrm{msg})$:
$\mathrm{ctr} \leftarrow 0$
$y \leftarrow \perp$
while $y=\perp$:

$$
x \leftarrow H_{p}(\operatorname{ctr} \| \mathrm{msg})
$$

$\mathrm{ctr} \leftarrow \mathrm{ctr}+1$
$y S q \leftarrow x^{3}+a x+b$
$y \leftarrow \operatorname{sqrt}(y S q) \quad / / \perp$ if $y S q$ is non-square
$P \leftarrow(x, y)$
return $[h] P$
// map to \mathbb{G} via cofactor mul

Attempt \#2: hash and check
HashToCurve $_{H \& C}(\mathrm{msg})$:
$\mathrm{ctr} \leftarrow 0$
$y \leftarrow \perp$
while $y=\perp$:
$x \leftarrow H_{p}(\operatorname{ctr} \| \mathrm{msg})$
$\mathrm{ctr} \leftarrow \mathrm{ctr}+1$
$y S q \leftarrow x^{3}+a x+b$
$y \leftarrow \operatorname{sqrt}(y S q) \quad / / \perp$ if $y S q$ is non-square
$P \leftarrow(x, y)$
return [h] P
// map to \mathbb{G} via cofactor mul

Attempt \#2: hash and check HashToCurve $_{H \& C}(\mathrm{msg})$:
$\mathrm{ctr} \leftarrow 0$
$y \leftarrow \perp$
while $y=\perp$:
$x \leftarrow H_{p}(\operatorname{ctr} \| \mathrm{msg})$
$\mathrm{ctr} \leftarrow \mathrm{ctr}+1$
$y S q \leftarrow x^{3}+a x+b$
$y \leftarrow \operatorname{sqrt}(y S q) \quad / / \perp$ if $y S q$ is non-square
$P \leftarrow(x, y)$
return $[h] P \quad / /$ map to \mathbb{G} via cofactor mul
$E\left(\mathbb{F}_{p}\right)=\left\{(x, y): x, y \in \mathbb{F}_{p}, y^{2}=x^{3}+a x+b\right\}$

Attempt \#2: hash and check
HashToCurve $_{H \& C}(\mathrm{msg})$:
$\mathrm{ctr} \leftarrow 0$
$y \leftarrow \perp$
while $y=\perp$:

$$
x \leftarrow H_{p}(\operatorname{ctr} \| \mathrm{msg})
$$

$\mathrm{ctr} \leftarrow \mathrm{ctr}+1$
$y S q \leftarrow x^{3}+a x+b$
$y \leftarrow \operatorname{sqrt}(y S q) \quad / / \perp$ if $y S q$ is non-square
$P \leftarrow(x, y)$
return $[h] P \quad / /$ map to \mathbb{G} via cofactor mul

Attempt \#2: hash and check HashToCurve ${ }_{H \& C}(\mathrm{msg})$:
$\mathrm{ctr} \leftarrow 0$
$y \leftarrow \perp$
while $y=\perp$:
$x \leftarrow H_{p}(\operatorname{ctr} \| \mathrm{msg})$
$\mathrm{ctr} \leftarrow \mathrm{ctr}+1$
$y S q \leftarrow x^{3}+a x+b$
$y \leftarrow \operatorname{sqrt}(y S q) \quad / / \perp$ if $y S q$ is non-square
$P \leftarrow(x, y)$
return $[h] P \quad / /$ map to \mathbb{G} via cofactor mul
Not constant time; "bad" inputs are common.

Attempt \#2: hash and check HashToCurve $_{H \& C}(\mathrm{msg})$:
$\mathrm{ctr} \leftarrow 0$
$y \leftarrow \perp$
while $y=\perp$:
$x \leftarrow H_{p}(\operatorname{ctr} \| \mathrm{msg})$
$\mathrm{ctr} \leftarrow \mathrm{ctr}+1$
$y S q \leftarrow x^{3}+a x+b$
$y \leftarrow \operatorname{sqrt}(y S q) \quad / / \perp$ if $y S q$ is non-square
$P \leftarrow(x, y)$
return $[h] P \quad / /$ map to \mathbb{G} via cofactor mul
Not constant time; "bad" inputs are common.
Loop a fixed number of times?

Attempt \#2: hash and check HashToCurve $_{H \& C}(\mathrm{msg})$:
$\mathrm{ctr} \leftarrow 0$
$y \leftarrow \perp$
while $y=\perp$:
$x \leftarrow H_{p}(\operatorname{ctr} \| \mathrm{msg})$
$\mathrm{ctr} \leftarrow \mathrm{ctr}+1$
$y S q \leftarrow x^{3}+a x+b$
$y \leftarrow \operatorname{sqrt}(y S q) \quad / / \perp$ if $y S q$ is non-square
$P \leftarrow(x, y)$
return $[h] P \quad / /$ map to \mathbb{G} via cofactor mul
Not constant time; "bad" inputs are common.
\boldsymbol{X} Loop a fixed number of times?
Slow; well-meaning "optimization" breaks CT.

Deterministic maps to elliptic curves
$M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5:$

Deterministic maps to elliptic curves
$M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M	Restrictions	Cost
$[\mathrm{BF} 01]$	$p \equiv 2 \bmod 3, a=0$	$1 \exp$

Deterministic maps to elliptic curves
$M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:
Map M

$$
\begin{aligned}
& \text { Restrictions } \\
& y^{2}=x^{3}+b \\
& \Longrightarrow x \equiv \sqrt[3]{y^{2}-b}
\end{aligned}
$$

Cost
[BF01] $p \equiv 2 \bmod 3, a=0 \quad 1 \exp$

Deterministic maps to elliptic curves
$M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	$[\mathrm{BF} 01]$	$p \equiv 2 \bmod 3, a=0$	$1 \exp$
	$[\mathrm{SW} 06]$	none	$3 \exp$

Deterministic maps to elliptic curves
$M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	$[\mathrm{BF} 01]$	$p \equiv 2 \bmod 3, a=0$	$1 \exp$
	$[\mathrm{SW} 06]$	none	$3 \exp$
SWU	$[\mathrm{Ulas} 07]$	$p \equiv 3 \bmod 4, a b \neq 0$	$3 \exp$

Deterministic maps to elliptic curves
$M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	$[\mathrm{BF} 01]$	$p \equiv 2 \bmod 3, a=0$	$1 \exp$
	$[\mathrm{SWO} 06$	none	$3 \exp$
SWU	$[\mathrm{Ulas07}]$	$p \equiv 3 \bmod 4, a b \neq 0$	$3 \exp$
	$[$ Icart09 $]$	$p \equiv 2 \bmod 3$	$1 \exp$

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	$[\mathrm{BF} 01]$	$p \equiv 2 \bmod 3, a=0$	$1 \exp$
	$[$ SW06 $]$	none	$3 \exp$
SWU	$[$ Ulas07 $]$	$p \equiv 3 \bmod 4, a b \neq 0$	$3 \exp$
	$[$ Icart09 $]$	$p \equiv 2 \bmod 3$	$1 \exp$
S-SWU	$[$ BCIMRT10 $]$	$p \equiv 3 \bmod 4, a b \neq 0$	$2 \exp$

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M
[BF01] [SW06]
SWU

S-SWU
Elligator
[Ulas07]
[Icart09]
[BCIMRT10]
[BHKL13]

Restrictions

$\begin{array}{l}p \equiv 2 \bmod 3, a=0 \\ \text { none }\end{array}$	$1 \exp$
$3 \exp$	

$p \equiv 3 \bmod 4, a b \neq 03 \exp$
$p \equiv 2 \bmod 3$
$p \equiv 3 \bmod 4, a b \neq 02 \exp$
$b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$

Cost

1 exp

1 exp

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M

SWU

S-SWU
Elligator

Restrictions

$p \equiv 2 \bmod 3, a=0$	$1 \exp$
none	$3 \exp$
$p \equiv 3 \bmod 4, a b \neq 0$	$3 \exp$
$p \equiv 2 \bmod 3$	$1 \exp$
$p \equiv 3 \bmod 4, a b \neq 0$	$2 \exp$
$b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	$1 \exp$

[Ulas07]
[Icart09]
[BCIMRT10]
[BHKL13]
[BF01] [SW06]

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	$[\mathrm{BFO1]}$	$p \equiv 2 \bmod 3, a=0$	$1 \exp$
	$[$ SW06 $]$	none	$3 \exp$
SWU	$[$ Ulas07]	$p \equiv 3 \bmod 4, a b \neq 0$	$3 \exp$
	$[I c a r t 09]$	$p \equiv 2 \bmod 3$	$1 \exp$
S-SWU	$[B C I M R T 10]$	$p \equiv 3 \bmod 4, a b \neq 0$	$2 \exp$
Elligator	$[B H K L 13]$	$b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	$1 \exp$
This work			$a b \neq 0$
		none	$1 \exp$
			$1^{+} \exp$

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	$[\mathrm{BFO1]}$	$p \equiv 2 \bmod 3, a=0$	$1 \exp$
	$[\mathrm{SWO6}]$	none	$3 \exp$
SWU	$[\mathrm{Ulas07}]$	$p \equiv 3 \bmod 4, a b \neq 0$	$3 \exp$
	$[$ Icart09]	$p \equiv 2 \bmod 3$	$1 \exp$
S-SWU	$[$ BCIMRT10]	$p \equiv 3 \bmod 4, a b \neq 0$	$2 \exp$
Elligator	$[$ BHKL13]	$b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	$1 \exp$
This work			$a b \neq 0$
		none	$1 \exp$

BLS12-381: $p \equiv 1 \bmod 3, \quad a=0, \quad 2 \nmid \# E\left(\mathbb{F}_{p}\right)$
[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	$[\mathrm{BFO1]}$	$x p \equiv 2 \bmod 3, a=0$	$1 \exp$
	$[\mathrm{SWO6}]$	none	$3 \exp$
SWU	$[\mathrm{Ulas07}]$	$p \equiv 3 \bmod 4, a b \neq 0$	$3 \exp$
	$[\mathrm{Icart09]}$	$x p \equiv 2 \bmod 3$	$1 \exp$
S-SWU	$[\mathrm{BCIMRT} 10]$	$p \equiv 3 \bmod 4, a b \neq 0$	$2 \exp$
Elligator	$[\mathrm{BHKL13}]$	$b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	$1 \exp$
This work		$a b \neq 0$	$1 \exp$
		none	$1^{+} \exp$

BLS12-381: $p \equiv 1 \bmod 3, \quad a=0, \quad 2 \nmid \# E\left(\mathbb{F}_{p}\right)$
[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19 . .]

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	$[\mathrm{BFO1]}$	$x p \equiv 2 \bmod 3, a=0$	$1 \exp$
	$[\mathrm{SWO6}]$	none	$3 \exp$
SWU	$[\mathrm{Ulas07]}$	$x p \equiv 3 \bmod 4, a b \neq 0$	$3 \exp$
	$[\mathrm{Icart09]}$	$x p \equiv 2 \bmod 3$	$1 \exp$
S-SWU	$[\mathrm{BCIMRT} 10]$	$x p \equiv 3 \bmod 4, a b \neq 0$	$2 \exp$
Elligator	$[\mathrm{BHKL13}]$	$b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	$1 \exp$
This work		$a b \neq 0$	$1 \exp$
		none	$1^{+} \exp$

BLS12-381: $p \equiv 1 \bmod 3, \quad a=0, \quad 2 \nmid \# E\left(\mathbb{F}_{p}\right)$
[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19 . .]

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	$[\mathrm{BFO1]}$	$x p \equiv 2 \bmod 3, a=0$	$1 \exp$
	$[\mathrm{SWO6}]$	none	$3 \exp$
SWU	$[\mathrm{Ulas07]}$	$x p \equiv 3 \bmod 4, a b \neq 0$	$3 \exp$
	$[\mathrm{Icart09]}$	$x p \equiv 2 \bmod 3$	$1 \exp$
S-SWU	$[\mathrm{BCIMRT} 10]$	$x p \equiv 3 \bmod 4, a b \neq 0$	$2 \exp$
Elligator	$[\mathrm{BHKL13}]$	$x b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	$1 \exp$
This work		$a b \neq 0$	$1 \exp$
		none	$1^{+} \exp$

BLS12-381: $p \equiv 1 \bmod 3, \quad a=0, \quad 2 \nmid \# E\left(\mathbb{F}_{p}\right)$
[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19 . .]

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
SWU	[BF01]	$X p \equiv 2 \bmod 3, a=0$	1 exp
	[SW06]	\checkmark none	3 exp
	[Ulas07]	$x p \equiv 3 \bmod 4, a b \neq 0$	3 exp
	[Icart09]	$x p \equiv 2 \bmod 3$	1 exp
S-SWU	[BCIMRT10]	$x p \equiv 3 \bmod 4, a b \neq 0$	$2 \exp$
Elligator	[BHKL13]	$x b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	1 exp
This work		$a b \neq 0$ none	$\begin{aligned} & 1 \exp \\ & 1^{+} \exp \end{aligned}$

BLS12-381: $p \equiv 1 \bmod 3, \quad a=0, \quad 2 \nmid \# E\left(\mathbb{F}_{p}\right)$
[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19 . .]

Deterministic maps to elliptic curves $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
SWU	[BF01]	$X p \equiv 2 \bmod 3, a=0$	1 exp
	[SW06]	\checkmark none	3 exp
	[Ulas07]	$x p \equiv 3 \bmod 4, a b \neq 0$	3 exp
	[Icart09]	$x p \equiv 2 \bmod 3$	1 exp
S-SWU	[BCIMRT10]	$x p \equiv 3 \bmod 4, a b \neq 0$	2 exp
Elligator	[BHKL13]	$x b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	1 exp
This work		$x a b \neq 0$	1 exp
		\checkmark none	$1^{+} \exp$

BLS12-381: $p \equiv 1 \bmod 3, \quad a=0, \quad 2 \nmid \# E\left(\mathbb{F}_{p}\right)$
[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. . .]

The Shallue-van de Woestijne map [SW06] (high level)

$$
E: y^{2}=f(x)=x^{3}+a x+b
$$

Idea $\# 1$ (Skałba): For $X_{1}, X_{2}, X_{3}, X_{4} \neq 0$, let

$$
V\left(\mathbb{F}_{p}\right): f\left(X_{1}\right) \cdot f\left(X_{2}\right) \cdot f\left(X_{3}\right)=X_{4}^{2}
$$

The Shallue-van de Woestijne map [SW06] (high level)

$$
E: y^{2}=f(x)=x^{3}+a x+b
$$

Idea $\# 1$ (Skałba): For $X_{1}, X_{2}, X_{3}, X_{4} \neq 0$, let

$$
V\left(\mathbb{F}_{p}\right): f\left(X_{1}\right) \cdot f\left(X_{2}\right) \cdot f\left(X_{3}\right)=X_{4}^{2}
$$

One of $f\left(X_{i}\right), i \in\{1,2,3\}$ must be square \Rightarrow that X_{i} must be an x-coordinate on $E\left(\mathbb{F}_{p}\right)$

The Shallue-van de Woestijne map [SW06] (high level)

$$
E: y^{2}=f(x)=x^{3}+a x+b
$$

Idea $\# 1$ (Skałba): For $X_{1}, X_{2}, X_{3}, X_{4} \neq 0$, let $V\left(\mathbb{F}_{p}\right): f\left(X_{1}\right) \cdot f\left(X_{2}\right) \cdot f\left(X_{3}\right)=X_{4}^{2}$

Idea $\# 2$: Construct a map $\mathbb{F}_{p} \mapsto V\left(\mathbb{F}_{p}\right)$, yielding polynomials $X_{1}(t), X_{2}(t), X_{3}(t)$.

The Shallue-van de Woestijne map [SW06] (high level)

$$
E: y^{2}=f(x)=x^{3}+a x+b
$$

Idea $\# 1$ (Skałba): For $X_{1}, X_{2}, X_{3}, X_{4} \neq 0$, let

$$
V\left(\mathbb{F}_{p}\right): f\left(X_{1}\right) \cdot f\left(X_{2}\right) \cdot f\left(X_{3}\right)=X_{4}^{2}
$$

Idea $\# 2$: Construct a map $\mathbb{F}_{p} \mapsto V\left(\mathbb{F}_{p}\right)$, yielding polynomials $X_{1}(t), X_{2}(t), X_{3}(t)$.
$\mathrm{SW}(t) \triangleq \begin{cases}\left(X_{1}(t), \sqrt{f\left(X_{1}(t)\right)}\right) & \text { if } f\left(X_{1}(t)\right) \text { is square, else } \\ \left(X_{2}(t), \sqrt{f\left(X_{2}(t)\right)}\right) & \text { if } f\left(X_{2}(t)\right) \text { is square, else } \\ \left(X_{3}(t), \sqrt{f\left(X_{3}(t)\right)}\right) & \end{cases}$

The Shallue-van de Woestijne map [SW06] (high level)

$$
E: y^{2}=f(x)=x^{3}+a x+b
$$

Idea $\# 1$ (Skałba): For $X_{1}, X_{2}, X_{3}, X_{4} \neq 0$, let

$$
V\left(\mathbb{F}_{p}\right): f\left(X_{1}\right) \cdot f\left(X_{2}\right) \cdot f\left(X_{3}\right)=X_{4}^{2}
$$

Idea $\# 2$: Construct a map $\mathbb{F}_{p} \mapsto V\left(\mathbb{F}_{p}\right)$, yielding polynomials $X_{1}(t), X_{2}(t), X_{3}(t)$.
$\mathrm{SW}(t) \triangleq \begin{cases}\left(X_{1}(t), \sqrt{f\left(X_{1}(t)\right)}\right) & \text { if } f\left(X_{1}(t)\right) \text { is square, else } \\ \left(X_{2}(t), \sqrt{f\left(X_{2}(t)\right)}\right) & \text { if } f\left(X_{2}(t)\right) \text { is square, else } \\ \left(X_{3}(t), \sqrt{f\left(X_{3}(t)\right)}\right) & \end{cases}$
constant-time cost dominated by 3 exps (recall: Legendre symbol in \mathbb{F}_{p} ops is $1 \exp$)

Hash functions from deterministic maps
Compose H_{p} and M in a natural way:
HashToCurve $_{\mathrm{Nu}}$ (msg) :

$$
\begin{array}{ll}
t \leftarrow H_{p}(\mathrm{msg}) & / /\{0,1\}^{\star} \mapsto \mathbb{F}_{p} \\
P \leftarrow M(t) & / / \mathbb{F}_{p} \mapsto E\left(\mathbb{F}_{p}\right) \\
\text { return }[h] P & / / E\left(\mathbb{F}_{p}\right) \mapsto \mathbb{G}
\end{array}
$$

Hash functions from deterministic maps
Compose H_{p} and M in a natural way:
HashToCurve $_{\mathrm{Nu}}$ (msg) :

$$
\begin{array}{ll}
t \leftarrow H_{p}(\mathrm{msg}) & / /\{0,1\}^{\star} \mapsto \mathbb{F}_{p} \\
P \leftarrow M(t) & / / \mathbb{F}_{p} \mapsto E\left(\mathbb{F}_{p}\right) \\
\text { return }[h] P & / / E\left(\mathbb{F}_{p}\right) \mapsto \mathbb{G}
\end{array}
$$

Hash functions from deterministic maps
Compose H_{p} and M in a natural way:
HashToCurve $_{\mathrm{Nu}}$ (msg) :

$$
\begin{array}{ll}
t \leftarrow H_{p}(\mathrm{msg}) & / /\{0,1\}^{\star} \mapsto \mathbb{F}_{p} \\
P \leftarrow M(t) & / / \mathbb{F}_{p} \mapsto E\left(\mathbb{F}_{p}\right) \\
\text { return }[h] P & / / E\left(\mathbb{F}_{p}\right) \mapsto \mathbb{G}
\end{array}
$$

Hash functions from deterministic maps
Compose H_{p} and M in a natural way:
HashToCurve $_{\mathrm{Nu}}$ (msg) :

$$
\begin{array}{ll}
t \leftarrow H_{p}(\mathrm{msg}) & / /\{0,1\}^{\star} \mapsto \mathbb{F}_{p} \\
P \leftarrow M(t) & / / \mathbb{F}_{p} \mapsto E\left(\mathbb{F}_{p}\right) \\
\text { return }[h] P & / / E\left(\mathbb{F}_{p}\right) \mapsto \mathbb{G}
\end{array}
$$

Hash functions from deterministic maps
Compose H_{p} and M in a natural way:
HashToCurve $_{\mathrm{Nu}}$ (msg) :

$$
\begin{array}{ll}
t \leftarrow H_{p}(\mathrm{msg}) & / /\{0,1\}^{\star} \mapsto \mathbb{F}_{p} \\
P \leftarrow M(t) & / / \mathbb{F}_{p} \mapsto E\left(\mathbb{F}_{p}\right) \\
\text { return }[h] P & \\
& \\
& E\left(\mathbb{F}_{p}\right) \mapsto \mathbb{G}
\end{array}
$$

Can use a faster method for cofactor clearing:

- via endomorphisms [GLV01,SBCDK09,FKR11,BP18]
- via subgroup structure [S19 (see WB19, §5)]

Hash functions from deterministic maps
Compose H_{p} and M in a natural way:
HashToCurve $_{\mathrm{Nu}}$ (msg) :

$$
\begin{array}{ll}
t \leftarrow H_{p}(\mathrm{msg}) & / /\{0,1\}^{\star} \mapsto \mathbb{F}_{p} \\
P \leftarrow M(t) & / / \mathbb{F}_{p} \mapsto E\left(\mathbb{F}_{p}\right) \\
\text { return }[h] P & / / E\left(\mathbb{F}_{p}\right) \mapsto \mathbb{G}
\end{array}
$$

Possible issue: M is not a bijection: $\# E\left(\mathbb{F}_{p}\right) \neq p$
output distribution is nonuniform

Hash functions from deterministic maps
Compose H_{p} and M in a natural way:
HashToCurve $_{\mathrm{Nu}}(\mathrm{msg})$:

$$
\begin{array}{ll}
t \leftarrow H_{p}(\mathrm{msg}) & / /\{0,1\}^{\star} \mapsto \mathbb{F}_{p} \\
P \leftarrow M(t) & / / \mathbb{F}_{p} \mapsto E\left(\mathbb{F}_{p}\right) \\
\text { return }[h] P & / / E\left(\mathbb{F}_{p}\right) \mapsto \mathbb{G}
\end{array}
$$

Possible issue: M is not a bijection: $\# E\left(\mathbb{F}_{p}\right) \neq p$ output distribution is nonuniform

This could be OK—but what if we need uniformity?

Uniform hashing from deterministic maps [BCIMRT10]

For some distinguished point $\hat{P} \in \mathbb{G}$:
HashToCurve ${ }_{\text {OtP }}$ (msg) :

$$
\begin{aligned}
& P_{1} \leftarrow M\left(H_{p}(\mathrm{msg})\right) \\
& x \leftarrow H_{q}(\mathrm{msg}) \\
& P_{2} \leftarrow[x] \hat{P} \\
& P \leftarrow P_{1}+P_{2} \\
& \text { return }[h] P
\end{aligned}
$$

Uniform hashing from deterministic maps [BCIMRT10]

For some distinguished point $\hat{P} \in \mathbb{G}$:
HashToCurve ${ }_{\text {OtP }}$ (msg) :

$$
\begin{aligned}
& P_{1} \leftarrow M\left(H_{p}(\mathrm{msg})\right) \\
& x \leftarrow H_{q}(\mathrm{msg}) \\
& P_{2} \leftarrow[x] \hat{P} \\
& P \leftarrow P_{1}+P_{2} \\
& \text { return }[h] P
\end{aligned}
$$

Uniform hashing from deterministic maps [BCIMRT10]

For some distinguished point $\hat{P} \in \mathbb{G}$:
HashToCurve ${ }_{\text {OtP }}$ (msg) :

$$
\begin{aligned}
& P_{1} \leftarrow M\left(H_{p}(\mathrm{msg})\right) \\
& x \leftarrow H_{q}(\mathrm{msg}) \\
& P_{2} \leftarrow[x] \hat{P} \\
& P \leftarrow P_{1}+P_{2} \\
& \text { return }[h] P
\end{aligned}
$$

Uniform hashing from deterministic maps [BCIMRT10]

For some distinguished point $\hat{P} \in \mathbb{G}$:
HashToCurve ${ }_{\text {OtP }}$ (msg) :

$$
\begin{aligned}
& P_{1} \leftarrow M\left(H_{p}(\mathrm{msg})\right) \\
& x \leftarrow H_{q}(\mathrm{msg}) \\
& P_{2} \leftarrow[x] \hat{P} \\
& P \leftarrow P_{1}+P_{2} \\
& \text { return }[h] P
\end{aligned}
$$

Uniform hashing from deterministic maps [BCIMRT10]

For some distinguished point $\hat{P} \in \mathbb{G}$:
HashToCurve ${ }_{\text {OtP }}$ (msg) :

$$
\begin{aligned}
& P_{1} \leftarrow M\left(H_{p}(\mathrm{msg})\right) \\
& x \leftarrow H_{q}(\mathrm{msg}) \\
& P_{2} \leftarrow[x] \hat{P} \\
& P \leftarrow P_{1}+P_{2} \\
& \text { return }[h] P
\end{aligned}
$$

$[x] \hat{P}$ acts as a "one-time pad"

Uniform hashing from deterministic maps [BCIMRT10]

For some distinguished point $\hat{P} \in \mathbb{G}$:
HashToCurve ${ }_{\text {OtP }}$ (msg) :

$$
\begin{aligned}
& P_{1} \leftarrow M\left(H_{p}(\mathrm{msg})\right) \\
& x \leftarrow H_{q}(\mathrm{msg}) \\
& P_{2} \leftarrow[x] \hat{P} \\
& P \leftarrow P_{1}+P_{2} \\
& \text { return }[h] P
\end{aligned}
$$

$[x] \hat{P}$ acts as a "one-time pad"
HashToCurveotp is indifferentiable from RO [MRH05]

Uniform hashing from deterministic maps [BCIMRT10]

For some distinguished point $\hat{P} \in \mathbb{G}$:
HashToCurve ${ }_{\text {OtP }}$ (msg) :

$$
\begin{aligned}
& P_{1} \leftarrow M\left(H_{p}(\mathrm{msg})\right) \\
& x \leftarrow H_{q}(\mathrm{msg}) \\
& P_{2} \leftarrow[x] \hat{P} \\
& P \leftarrow P_{1}+P_{2} \\
& \text { return }[h] P
\end{aligned}
$$

$[x] \hat{P}$ acts as a "one-time pad"
HashToCurveotp is indifferentiable from RO [MRH05]

Faster uniform hashing from deterministic maps
Problem: point multiplication is usually much more expensive than evaluating M.

Faster uniform hashing from deterministic maps
Problem: point multiplication is usually much more expensive than evaluating M.

Idea [BCIMRT10,FFSTV13]:
HashToCurve(msg) :

$$
\begin{aligned}
& P_{1} \leftarrow M\left(H_{p}(0 \| \mathrm{msg})\right) \\
& P_{2} \leftarrow M\left(H_{p}(1 \| \mathrm{msg})\right) \\
& P \leftarrow P_{1}+P_{2} \\
& \text { return }[h] P
\end{aligned}
$$

Faster uniform hashing from deterministic maps
Problem: point multiplication is usually much more expensive than evaluating M.

Idea [BCIMRT10,FFSTV13]:
HashToCurve(msg) :

$$
\begin{aligned}
& P_{1} \leftarrow M\left(H_{p}(0 \| \mathrm{msg})\right) \\
& P_{2} \leftarrow M\left(H_{p}(1 \| \mathrm{msg})\right) \\
& P \leftarrow P_{1}+P_{2} \\
& \text { return }[h] P
\end{aligned}
$$

Faster uniform hashing from deterministic maps

Problem: point multiplication is usually much more expensive than evaluating M.

Idea [BCIMRT10,FFSTV13]:
HashToCurve(msg) :

$$
\begin{aligned}
& P_{1} \leftarrow M\left(H_{p}(0 \| \mathrm{msg})\right) \\
& P_{2} \leftarrow M\left(H_{p}(1 \| \mathrm{msg})\right) \\
& P \leftarrow P_{1}+P_{2} \\
& \text { return }[h] P
\end{aligned}
$$

Indifferentiable from RO if M is well distributed \checkmark All of the M we've seen are well distributed.

Roadmap

1. Hash functions to elliptic curves
2. Optimizing the map of [BCIMRT10]
3. Evaluation results
4. IETF standardization efforts

The Simplified SWU map [BCIMRT10]

$$
E: y^{2}=f(x)=x^{3}+a x+b, \quad a b \neq 0
$$

Idea: pick x s.t. $f(u x)=u^{3} f(x)$.
For u non-square $\in \mathbb{F}_{p}, f(x)$ or $f(u x)$ is square.

The Simplified SWU map [BCIMRT10]

$$
E: y^{2}=f(x)=x^{3}+a x+b, \quad a b \neq 0
$$

Idea: pick x s.t. $f(u x)=u^{3} f(x)$.
For u non-square $\in \mathbb{F}_{p}, f(x)$ or $f(u x)$ is square.

$$
\begin{aligned}
u^{3} x^{3}+a u x+b & =u^{3}\left(x^{3}+a x+b\right) \\
x & =-\frac{b}{a}\left(1+\frac{1}{u^{2}+u}\right)
\end{aligned}
$$

The Simplified SWU map [BCIMRT10]

$$
E: y^{2}=f(x)=x^{3}+a x+b, \quad a b \neq 0
$$

Idea: pick x s.t. $f(u x)=u^{3} f(x)$.
For u non-square $\in \mathbb{F}_{p}, f(x)$ or $f(u x)$ is square.

$$
\begin{aligned}
u^{3} x^{3}+a u x+b & =u^{3}\left(x^{3}+a x+b\right) \\
x & =-\frac{b}{a}\left(1+\frac{1}{u^{2}+u}\right)
\end{aligned}
$$

If $p \equiv 3 \bmod 4, u=-t^{2}$ is non-square

The Simplified SWU map [BCIMRT10]

$$
E: y^{2}=f(x)=x^{3}+a x+b, \quad a b \neq 0
$$

Idea: pick x s.t. $f(u x)=u^{3} f(x)$.
For u non-square $\in \mathbb{F}_{p}, f(x)$ or $f(u x)$ is square.

$$
\begin{aligned}
u^{3} x^{3}+a u x+b & =u^{3}\left(x^{3}+a x+b\right) \\
x & =-\frac{b}{a}\left(1+\frac{1}{u^{2}+u}\right)
\end{aligned}
$$

If $p \equiv 3 \bmod 4, u=-t^{2}$ is non-square, so:

$$
X_{0}(t) \triangleq-\frac{b}{a}\left(1+\frac{1}{t^{4}-t^{2}}\right) \quad X_{1}(t) \triangleq-t^{2} X_{0}(t)
$$

Evaluating the S-SWU map

$\operatorname{S-SWU}(t) \triangleq \begin{cases}\left(X_{0}(t), \sqrt{f\left(X_{0}(t)\right)}\right) & \text { if } f\left(X_{0}(t)\right) \text { is square } \\ \left(X_{1}(t), \sqrt{f\left(X_{1}(t)\right)}\right) & \text { otherwise }\end{cases}$

Evaluating the S-SWU map

$\operatorname{S-SWU}(t) \triangleq \begin{cases}\left(X_{0}(t), \sqrt{f\left(X_{0}(t)\right)}\right) & \text { if } f\left(X_{0}(t)\right) \text { is square } \\ \left(X_{1}(t), \sqrt{f\left(X_{1}(t)\right)}\right) & \text { otherwise }\end{cases}$
Attempt $\# 1($ assume $p \equiv 3 \bmod 4)$:

$$
\begin{array}{ll}
x_{0} \leftarrow X_{0}(t) & \\
y_{0} \leftarrow f\left(x_{0}\right)^{\frac{p+1}{4}} & \text { // } \boldsymbol{x} \text { expensive } \\
x_{1} \leftarrow-t^{2} x_{0} & \text { // a.k.a. } x_{1}(t) \\
y_{1} \leftarrow f\left(x_{1}\right)^{\frac{p+1}{4}} & / / \boldsymbol{x} \text { expensive } \\
\text { if } y_{0}^{2}=f\left(x_{0}\right): \text { return }\left(x_{0}, y_{0}\right) & \\
\text { else: return }\left(x_{1}, y_{1}\right) &
\end{array}
$$

Evaluating the S-SWU map

$\operatorname{S-SWU}(t) \triangleq \begin{cases}\left(X_{0}(t), \sqrt{f\left(X_{0}(t)\right)}\right) & \text { if } f\left(X_{0}(t)\right) \text { is square } \\ \left(X_{1}(t), \sqrt{f\left(X_{1}(t)\right)}\right) & \text { otherwise }\end{cases}$
Attempt \#1 (assume $p \equiv 3 \bmod 4)$:

$$
\begin{array}{ll}
x_{0} \leftarrow X_{0}(t) & \\
y_{0} \leftarrow f\left(x_{0}\right)^{\frac{p+1}{4}} & \text { // } x \text { expensive } \\
x_{1} \leftarrow-t^{2} x_{0} & \text { // a.k.a. } X_{1}(t) \\
y_{1} \leftarrow f\left(x_{1}\right)^{\frac{p+1}{4}} & / / \boldsymbol{x} \text { expensive } \\
\text { if } y_{0}^{2}=f\left(x_{0}\right): \text { return }\left(x_{0}, y_{0}\right) & \\
\text { else: return }\left(x_{1}, y_{1}\right) &
\end{array}
$$

Evaluating the S-SWU map

$\operatorname{S-SWU}(t) \triangleq \begin{cases}\left(X_{0}(t), \sqrt{f\left(X_{0}(t)\right)}\right) & \text { if } f\left(X_{0}(t)\right) \text { is square } \\ \left(X_{1}(t), \sqrt{f\left(X_{1}(t)\right)}\right) & \text { otherwise }\end{cases}$
Attempt $\# 1($ assume $p \equiv 3 \bmod 4)$:

$$
\begin{array}{ll}
x_{0} \leftarrow X_{0}(t) & \\
y_{0} \leftarrow f\left(x_{0}\right)^{\frac{p+1}{4}} & \text { // } x \text { expensive } \\
x_{1} \leftarrow-t^{2} x_{0} & \text { // a.k.a. } X_{1}(t) \\
y_{1} \leftarrow f\left(x_{1}\right)^{\frac{p+1}{4}} & / / \boldsymbol{x} \text { expensive } \\
\text { if } y_{0}^{2}=f\left(x_{0}\right): \text { return }\left(x_{0}, y_{0}\right) & \\
\text { else: return }\left(x_{1}, y_{1}\right) &
\end{array}
$$

Evaluating the S-SWU map

$\operatorname{S-SWU}(t) \triangleq \begin{cases}\left(X_{0}(t), \sqrt{f\left(X_{0}(t)\right)}\right) & \text { if } f\left(X_{0}(t)\right) \text { is square } \\ \left(X_{1}(t), \sqrt{f\left(X_{1}(t)\right)}\right) & \text { otherwise }\end{cases}$
Attempt $\# 1($ assume $p \equiv 3 \bmod 4)$:

$$
\begin{aligned}
& x_{0} \leftarrow X_{0}(t) \\
& y_{0} \leftarrow f\left(x_{0}\right)^{\frac{p+1}{4}} \\
& x_{1} \leftarrow-t^{2} x_{0} \\
& y_{1} \leftarrow f\left(x_{1}\right)^{\frac{p+1}{4}} \\
& \text { if } y_{0}^{2}=f\left(x_{0}\right): \text { return }\left(x_{0}, y_{0}\right) \\
& \text { else: return }\left(x_{1}, y_{1}\right)
\end{aligned}
$$

Requires two exponentiations! Can we do better?

Eliminating an exponentiation

Recall: $f\left(x_{1}\right)=-t^{6} f\left(x_{0}\right)$. So:

$$
f\left(x_{1}\right)^{\frac{p+1}{4}}=\left(-t^{6} f\left(x_{0}\right)\right)^{\frac{p+1}{4}}
$$

Eliminating an exponentiation

Recall: $f\left(x_{1}\right)=-t^{6} f\left(x_{0}\right)$. So:

$$
\begin{aligned}
f\left(x_{1}\right)^{\frac{p+1}{4}} & =\left(-t^{6} f\left(x_{0}\right)\right)^{\frac{p+1}{4}} \\
& =t^{3}\left(-f\left(x_{0}\right)\right)^{\frac{p+1}{4}}=t^{3} \sqrt{-f\left(x_{0}\right)}
\end{aligned}
$$

Eliminating an exponentiation

Recall: $f\left(x_{1}\right)=-t^{6} f\left(x_{0}\right)$. So:

$$
\begin{aligned}
f\left(x_{1}\right)^{\frac{p+1}{4}} & =\left(-t^{6} f\left(x_{0}\right)\right)^{\frac{p+1}{4}} \\
& =t^{3}\left(-f\left(x_{0}\right)\right)^{\frac{p+1}{4}}=t^{3} \sqrt{-f\left(x_{0}\right)}
\end{aligned}
$$

We have $f\left(x_{0}\right)^{\frac{p+1}{4}}$. Can we use this?

Eliminating an exponentiation

Recall: $f\left(x_{1}\right)=-t^{6} f\left(x_{0}\right)$. So:

$$
\begin{aligned}
f\left(x_{1}\right)^{\frac{p+1}{4}} & =\left(-t^{6} f\left(x_{0}\right)\right)^{\frac{p+1}{4}} \\
& =t^{3}\left(-f\left(x_{0}\right)\right)^{\frac{p+1}{4}}=t^{3} \sqrt{-f\left(x_{0}\right)}
\end{aligned}
$$

We have $f\left(x_{0}\right)^{\frac{p+1}{4}}$. Can we use this?

$$
\left(f\left(x_{0}\right)^{\frac{p+1}{4}}\right)^{2}=f\left(x_{0}\right)^{\frac{p+1}{2}}=f\left(x_{0}\right) \cdot f\left(x_{0}\right)^{\frac{p-1}{2}}
$$

Eliminating an exponentiation

Recall: $f\left(x_{1}\right)=-t^{6} f\left(x_{0}\right)$. So:

$$
\begin{aligned}
f\left(x_{1}\right)^{\frac{p+1}{4}} & =\left(-t^{6} f\left(x_{0}\right)\right)^{\frac{p+1}{4}} \\
& =t^{3}\left(-f\left(x_{0}\right)\right)^{\frac{p+1}{4}}=t^{3} \sqrt{-f\left(x_{0}\right)}
\end{aligned}
$$

We have $f\left(x_{0}\right)^{\frac{p+1}{4}}$. Can we use this?

$$
\begin{gathered}
\left(f\left(x_{0}\right)^{\frac{p+1}{4}}\right)^{2}=f\left(x_{0}\right)^{\frac{p+1}{2}}=f\left(x_{0}\right) \cdot f\left(x_{0}\right)^{\frac{p-1}{2}} \\
\text { Legendre symbol! }
\end{gathered}
$$

Eliminating an exponentiation

Recall: $f\left(x_{1}\right)=-t^{6} f\left(x_{0}\right)$. So:

$$
\begin{aligned}
f\left(x_{1}\right)^{\frac{p+1}{4}} & =\left(-t^{6} f\left(x_{0}\right)\right)^{\frac{p+1}{4}} \\
& =t^{3}\left(-f\left(x_{0}\right)\right)^{\frac{p+1}{4}}=t^{3} \sqrt{-f\left(x_{0}\right)}
\end{aligned}
$$

We have $f\left(x_{0}\right)^{\frac{p+1}{4}}$. Can we use this?

$$
\begin{aligned}
\left(f\left(x_{0}\right)^{\frac{p+1}{4}}\right)^{2} & =f\left(x_{0}\right)^{\frac{p+1}{2}}=f\left(x_{0}\right) \cdot f\left(x_{0}\right)^{\frac{p-1}{2}} \\
& =-f\left(x_{0}\right) \quad \text { if } f\left(x_{0}\right) \text { is non-square }
\end{aligned}
$$

$\checkmark f\left(x_{0}\right)^{\frac{p+1}{4}}$ is $\sqrt{-f\left(x_{0}\right)}$ when $f\left(x_{0}\right)$ is non-square!

Evaluating the S-SWU map-faster!

Attempt \#2 (assume $p \equiv 3 \bmod 4)$:

$$
\begin{array}{ll}
x_{0} \leftarrow X_{0}(t) & \\
y_{0} \leftarrow f\left(x_{0}\right)^{(p+1) / 4} & / / x \text { expensive } \\
x_{1} \leftarrow-t^{2} x_{0} & / / \text { a.k.a. } x_{1}(t) \\
y_{1} \leftarrow t^{3} y_{0} & / / \checkmark \text { cheap! } \\
\text { if } y_{0}^{2}=f\left(x_{0}\right): \text { return }\left(x_{0}, y_{0}\right) & \\
\text { else: return }\left(x_{1}, y_{1}\right) &
\end{array}
$$

Evaluating the S-SWU map-faster!

Attempt \#2 (assume $p \equiv 3 \bmod 4)$:

$$
\begin{array}{ll}
x_{0} \leftarrow X_{0}(t) & \\
y_{0} \leftarrow f\left(x_{0}\right)^{(p+1) / 4} & / / x \text { expensive } \\
x_{1} \leftarrow-t^{2} x_{0} & / / \text { a.k.a. } x_{1}(t) \\
y_{1} \leftarrow t^{3} y_{0} & / / \checkmark \text { cheap! } \\
\text { if } y_{0}^{2}=f\left(x_{0}\right): \text { return }\left(x_{0}, y_{0}\right) & \\
\text { else: return }\left(x_{1}, y_{1}\right) &
\end{array}
$$

\checkmark Prior work [BDLSY12] lets us avoid inversions.

Evaluating the S-SWU map-faster!

Attempt \#2 (assume $p \equiv 3 \bmod 4)$:

$$
\begin{array}{ll}
x_{0} \leftarrow X_{0}(t) & \\
y_{0} \leftarrow f\left(x_{0}\right)^{(p+1) / 4} & / / x \text { expensive } \\
x_{1} \leftarrow-t^{2} x_{0} & / / \text { a.k.a. } x_{1}(t) \\
y_{1} \leftarrow t^{3} y_{0} & / / \checkmark \text { cheap! } \\
\text { if } y_{0}^{2}=f\left(x_{0}\right): \text { return }\left(x_{0}, y_{0}\right) & \\
\text { else: return }\left(x_{1}, y_{1}\right) &
\end{array}
$$

\checkmark Prior work [BDLSY12] lets us avoid inversions.
\checkmark Straightforward to generalize to $p \equiv 1 \bmod 4$.

Generalizing: the $p \equiv 5 \bmod 8$ case
-1 is square in $\mathbb{F}_{p} \Rightarrow$ need $u=\xi t^{2}$ for ξ nonsquare.

Generalizing: the $p \equiv 5 \bmod 8$ case

-1 is square in $\mathbb{F}_{p} \Rightarrow$ need $u=\xi t^{2}$ for ξ nonsquare.
Recall Atkin's square-root trick:

$$
\left(z^{\frac{p+3}{8}}\right)^{2}=z \cdot\left(z^{\frac{p-1}{2}}\right)^{\frac{1}{2}}
$$

Generalizing: the $p \equiv 5 \bmod 8$ case

-1 is square in $\mathbb{F}_{p} \Rightarrow$ need $u=\xi t^{2}$ for ξ nonsquare.
Recall Atkin's square-root trick:

$$
\left(z^{\frac{p+3}{8}}\right)^{2}=z \cdot\left(z^{\frac{p-1}{2}}\right)^{\frac{1}{2}}
$$

Legendre symbol!

Generalizing: the $p \equiv 5 \bmod 8$ case

-1 is square in $\mathbb{F}_{p} \Rightarrow$ need $u=\xi t^{2}$ for ξ nonsquare.
Recall Atkin's square-root trick:

$$
\begin{aligned}
\left(z^{\frac{p+3}{8}}\right)^{2} & =z \cdot\left(z^{\frac{p-1}{2}}\right)^{\frac{1}{2}} \\
z^{\frac{p+3}{8}} \cdot 1^{-\frac{1}{4}} & =\sqrt{z}
\end{aligned}
$$

Generalizing: the $p \equiv 5 \bmod 8$ case

-1 is square in $\mathbb{F}_{p} \Rightarrow$ need $u=\xi t^{2}$ for ξ nonsquare.
Recall Atkin's square-root trick:

$$
\begin{aligned}
\left(z^{\frac{p+3}{8}}\right)^{2} & =z \cdot\left(z^{\frac{p-1}{2}}\right)^{\frac{1}{2}} \\
z^{\frac{p+3}{8}} \cdot 1^{-\frac{1}{4}} & =\sqrt{z}
\end{aligned}
$$

So we want:

$$
\begin{aligned}
\sqrt{f\left(x_{1}\right)} & =\sqrt{\xi^{3} t^{6} f\left(x_{0}\right)} \\
& =t^{3}\left(\xi^{3} f\left(x_{0}\right)\right)^{\frac{p+3}{8}} \cdot 1^{-\frac{1}{4}}
\end{aligned}
$$

Generalizing: the $p \equiv 5 \bmod 8$ case

- 1 is square in $\mathbb{F}_{p} \Rightarrow$ need $u=\xi t^{2}$ for ξ nonsquare.

Recall Atkin's square-root trick:

$$
\begin{aligned}
\left(z^{\frac{p+3}{8}}\right)^{2} & =z \cdot\left(z^{\frac{p-1}{2}}\right)^{\frac{1}{2}} \\
z^{\frac{p+3}{8}} \cdot 1^{-\frac{1}{4}} & =\sqrt{z}
\end{aligned}
$$

So we want:

$$
\begin{aligned}
\sqrt{f\left(x_{1}\right)} & =\sqrt{\xi^{3} t^{6} f\left(x_{0}\right)} \\
& =t^{3}\left(\xi^{3} f\left(x_{0}\right)\right)^{\frac{p+3}{8}} \cdot 1^{-\frac{1}{4}}
\end{aligned}
$$

ξ is fixed, so we can preompute $\left(\xi^{3}\right)^{\frac{p+3}{8}}$

Supporting the $a b=0$ case

Issue: S-SWU still does not work with $a b=0$.
 Rules out pairing-friendly curves [BLS03,BN06,...]

Supporting the $a b=0$ case

Issue: S-SWU still does not work with $a b=0$.
Rules out pairing-friendly curves [BLS03,BN06,...]

Idea: map to a curve E^{\prime} having $a b \neq 0$ and an efficiently-computable homomorphism to E.

Supporting the $a b=0$ case

Issue: S-SWU still does not work with $a b=0$.
Rules out pairing-friendly curves [BLS03,BN06,...]

Idea: map to a curve E^{\prime} having $a b \neq 0$ and an efficiently-computable homomorphism to E.

Specifically: Find $E^{\prime}\left(\mathbb{F}_{p}\right) d$-isogenous to E, d small. Defines a degree $\approx d$ rational map $E^{\prime}\left(\mathbb{F}_{p}\right) \rightarrow E\left(\mathbb{F}_{p}\right)$

Supporting the $a b=0$ case

Issue: S-SWU still does not work with $a b=0$.
Rules out pairing-friendly curves [BLS03,BN06,...]

Idea: map to a curve E^{\prime} having $a b \neq 0$ and an efficiently-computable homomorphism to E.

Specifically: Find $E^{\prime}\left(\mathbb{F}_{p}\right) d$-isogenous to E, d small. Defines a degree $\approx d$ rational map $E^{\prime}\left(\mathbb{F}_{p}\right) \rightarrow E\left(\mathbb{F}_{p}\right)$

Then: S-SWU to $E^{\prime}\left(\mathbb{F}_{p}\right)$, isogeny map to $E\left(\mathbb{F}_{p}\right)$.
\checkmark Preserves well-distributedness of S-SWU.

Roadmap

1. Hash functions to elliptic curves
2. Optimizing the map of [BCIMRT10]
3. Evaluation results
4. IETF standardization efforts

Implementation, baselines, setup, method
BLS12-381 defines $\mathbb{G}_{1} \subset E_{1}\left(\mathbb{F}_{p}\right)$ and $\mathbb{G}_{2} \subset E_{2}\left(\mathbb{F}_{p^{2}}\right)$.

Implementation, baselines, setup, method

BLS12-381 defines $\mathbb{G}_{1} \subset E_{1}\left(\mathbb{F}_{p}\right)$ and $\mathbb{G}_{2} \subset E_{2}\left(\mathbb{F}_{p^{2}}\right)$.
For \mathbb{G}_{1} and \mathbb{G}_{2}, we implement:
Maps: hash-and-check; [SW06]; this work
Styles: full bigint; field ops only, non-CT and CT Hashes: non-uniform; uniform
In total: 34 hash variants, 3520 lines of C .

Implementation, baselines, setup, method

BLS12-381 defines $\mathbb{G}_{1} \subset E_{1}\left(\mathbb{F}_{p}\right)$ and $\mathbb{G}_{2} \subset E_{2}\left(\mathbb{F}_{p^{2}}\right)$.
For \mathbb{G}_{1} and \mathbb{G}_{2}, we implement:
Maps: hash-and-check; [SW06]; this work
Styles: full bigint; field ops only, non-CT and CT Hashes: non-uniform; uniform
In total: 34 hash variants, 3520 lines of C .

Implementation, baselines, setup, method

BLS12-381 defines $\mathbb{G}_{1} \subset E_{1}\left(\mathbb{F}_{p}\right)$ and $\mathbb{G}_{2} \subset E_{2}\left(\mathbb{F}_{p^{2}}\right)$.
For \mathbb{G}_{1} and \mathbb{G}_{2}, we implement:
Maps: hash-and-check; [SW06]; this work
Styles: full bigint; field ops only, non-CT and CT Hashes: non-uniform; uniform
In total: 34 hash variants, 3520 lines of C .
Setup: Xeon E3-1535M v6 (no hyperthreading or frequency scaling); Linux 5.2; GCC 9.1.0.

Implementation, baselines, setup, method

BLS12-381 defines $\mathbb{G}_{1} \subset E_{1}\left(\mathbb{F}_{p}\right)$ and $\mathbb{G}_{2} \subset E_{2}\left(\mathbb{F}_{p^{2}}\right)$.
For \mathbb{G}_{1} and \mathbb{G}_{2}, we implement:
Maps: hash-and-check; [SW06]; this work
Styles: full bigint; field ops only, non-CT and CT Hashes: non-uniform; uniform
In total: 34 hash variants, 3520 lines of C .
Setup: Xeon E3-1535M v6 (no hyperthreading or frequency scaling); Linux 5.2; GCC 9.1.0.

Method: run each hash 10^{6} times; record \#cycles.

BLS12-381 \mathbb{G}_{1}, uniform hash function

Roadmap

1. Hash functions to elliptic curves
2. Optimizing the map of [BCIMRT10]
3. Evaluation results
4. IETF standardization efforts

Which maps should the IETF standardize? $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \bmod 3, a=0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \bmod 4, a b \neq 0$	3 exp
	[Icart09]	$p \equiv 2 \bmod 3$	1 exp
S-SWU	[BCIMRT10]	$p \equiv 3 \bmod 4, a b \neq 0$	2 exp
Elligator	[BHKL13]	$b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	1 exp
This work		$a b \neq 0$ none	$\begin{aligned} & 1 \text { exp } \\ & 1^{+} \text {exp } \end{aligned}$

Which maps should the IETF standardize?
$M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \bmod 3, a=0$	1 exp
	[SW06]	none	$3 \exp$
SNU	[Ulas07]	$p=3$ mod $4, a b \neq 0$	
	[Icart09]	$p \equiv 2 \bmod 3$	1 exp
S-SWU	[BCIMRT10]	$p \equiv 3 \bmod 4, a b \neq 0$	2 exp
Elligator	[BHKL13]	$b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	1 exp
This work		$a b \neq 0$ none	$\begin{aligned} & 1 \text { exp } \\ & 1^{+} \text {exp } \end{aligned}$

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19...]

Which maps should the IETF standardize? $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M

Restrictions Cost

	[BF01]	$p \equiv 2 \bmod 3, a=0$	1 exp
	[SW06]	none	$3 \exp$
SWU	[Ulas07]		3 3-x
	[leartor]	$p=2 \rightarrow 3$	1-x
S-SWU	[BCIMRT10]	$p \equiv 3 \bmod 4, a b \neq 0$	$2 \exp$
Elligator	[BHKL13]	$b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	$1 \exp$
This work		$a b \neq 0$ none	$\begin{aligned} & 1 \text { exp } \\ & 1^{+} \text {exp } \end{aligned}$

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19...]

Which maps should the IETF standardize? $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M	Restrictions	Cost
[BF01]	$p \equiv 2 \bmod 3, a=0$	1 exp
[SW06]	none	$3 \exp$
SWU [Ulas07]	$p=3$ mat $4, a b \neq 0$	3 exp
Heator	$p=2 \bmod$	¢
S-SWU [BCHMRT10]	$=3-4, a b \neq 0$	exp
Elligator [BHKL13]	$b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	1 exp
This work (+ tweaks to avoid infringing patents)	$a b \neq 0$ none	$\begin{aligned} & \hline 1 \exp \\ & 1^{+} \exp \end{aligned}$

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19. ..]

Which maps should the IETF standardize? $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$: Map M Restrictions Cost

	[BF01]	$p \equiv 2 \bmod 3, a=0$	1 exp
	[SW06]	none	$3 \exp$
SW	[Has07]	$p=3$ mad $4, a b \neq 0$	
	[leartol]	$p=2 \bmod$	$1{ }^{1}$
S-SWU	[BCIMRT10]	$p \equiv 3 \mathrm{mod}, a b \neq 0$	exp
Elligator	[BHKL13]	$b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	$1 \exp$
This work (+ tweaks to avoid infringing patents)		$a b \neq 0$ none	$\begin{aligned} & 1 \text { exp } \\ & 1^{+} \exp \end{aligned}$

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19...]

Which maps should the IETF standardize? $M: \mathbb{F}_{p} \rightarrow E\left(\mathbb{F}_{p}\right)$, where $E: y^{2}=x^{3}+a x+b$ and $p>5$:

Map M		Restrictions	Cost
	[BF01] ? ? ?	$p \equiv 2 \bmod 3, a$	1 exp
	[SW06]	none	$3 \exp$
SW	[Ulas07]	$p=3 \mathrm{mod} 4, a b$	
	[leartop]	$p=2 \rightarrow 3$,
S-SWU	[BCHART10]	$p \equiv 3 \mathrm{mod} 4, a b \neq$	20
Elligator	[BHKL13]	$b \neq 0,2 \mid \# E\left(\mathbb{F}_{p}\right)$	1 exp
This work (+ tweaks to avoid infringing patents)		$a b \neq 0$ none	$\begin{aligned} & 1 \exp \\ & 1^{+} \exp \end{aligned}$

What about supersingular maps [BF01,BLMP19]?
[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19...]

Recap and conclusion

Contributions:
\checkmark Optimizations to the map of [BCIMRT10]
\checkmark "Indirect" approach to expand applicability
\checkmark Fast impls are simple and constant time

Recap and conclusion

Contributions:
\checkmark Optimizations to the map of [BCIMRT10]
\checkmark "Indirect" approach to expand applicability
\checkmark Fast impls are simple and constant time
Result: hash-to-curve costs 1^{+}exponentiation for essentially any prime-field elliptic curve.

Recap and conclusion

Contributions:
\checkmark Optimizations to the map of [BCIMRT10]
\checkmark "Indirect" approach to expand applicability
\checkmark Fast impls are simple and constant time
Result: hash-to-curve costs 1^{+}exponentiation for essentially any prime-field elliptic curve.
State of the art for BLS, BN, NIST, secp256k1, and other curves not covered by Elligator or Icart.

Recap and conclusion

Contributions:

\checkmark Optimizations to the map of [BCIMRT10]
\checkmark "Indirect" approach to expand applicability
\checkmark Fast impls are simple and constant time
Result: hash-to-curve costs 1^{+}exponentiation for essentially any prime-field elliptic curve.
State of the art for BLS, BN, NIST, secp256k1, and other curves not covered by Elligator or Icart.
https://bls-hash.crypto.fyi
https://github.com/kwantam/bls12-381_hash
https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve rsw@cs.stanford.edu

