Doubly-efficient zkSNARKs without trusted setup

Riad S. Wahby*, Ioanna Tzialla°, abhi shelat[†], Justin Thaler[‡], and Michael Walfish°

> *Stanford University °New York University †Northeastern University ‡Georgetown University

May 23rd, 2018

Argument A "proof"...

$\mathsf{z}\mathsf{k}\mathsf{SNAR}\mathsf{K}$

Argument A "proof"...

of knowledge ... that you know a secret, and...

Argument A "proof"....

of knowledge ... that you know a secret, and...

Zero knowledge ... it doesn't reveal the secret.

Argument A "proof"....

of knowledge ... that you know a secret, and...

Zero knowledge ... it doesn't reveal the secret.

Succinct It's short...

Argument A "proof"...

of knowledge ... that you know a secret, and...

Zero knowledge ... it doesn't reveal the secret.

Succinct It's short...

Non-interactive ... and it can be written down...

Argument A "proof"...

of knowledge ... that you know a secret, and...

Zero knowledge ... it doesn't reveal the secret.

Succinct It's short...

Non-interactive ... and it can be written down...

(Publicly verifiable) ... so that anyone can check it.

Proof size

Proof size

Prover (\mathcal{P}) time

Proof size

Prover (\mathcal{P}) time

Verifier (\mathcal{V}) time

Proof size

Prover (\mathcal{P}) time

Verifier (\mathcal{V}) time

Cryptographic assumptions

Proof size

Prover (\mathcal{P}) time

Verifier (\mathcal{V}) time

Cryptographic assumptions

Trusted setup?

→ We design and implement *Hyrax*, a zkSNARK for "parallel" arithmetic circuit satisfiability:

for \mathcal{V} 's input x, $\exists w : \mathcal{C}(x, w) = 1$ (and \mathcal{P} knows w)

→ We design and implement *Hyrax*, a zkSNARK for "parallel" arithmetic circuit satisfiability:

for \mathcal{V} 's input x, $\exists w : \mathcal{C}(x, w) = 1$ (and \mathcal{P} knows w)

Proof size is sub-linear in |C| and |w|

Prover time is linear in $|\mathcal{C}|$

Verifier time is sublinear in $|\mathcal{C}|$ and |w|

→ We design and implement *Hyrax*, a zkSNARK for "parallel" arithmetic circuit satisfiability:

for \mathcal{V} 's input x, $\exists w : \mathcal{C}(x, w) = 1$ (and \mathcal{P} knows w)

Proof size is sub-linear in |C| and |w|

Prover time is linear in $\left|\mathcal{C}\right|$

Verifier time is sublinear in $|\mathcal{C}|$ and |w|

Good constants: concrete costs are low

→ We design and implement *Hyrax*, a zkSNARK for "parallel" arithmetic circuit satisfiability:

for \mathcal{V} 's input x, $\exists w : \mathcal{C}(x, w) = 1$ (and \mathcal{P} knows w)

Proof size is sub-linear in |C| and |w|

Prover time is linear in $\left|\mathcal{C}\right|$

Verifier time is sublinear in $|\mathcal{C}|$ and |w|

Good constants: concrete costs are low

Cryptographic assumptions: discrete log

No trusted setup

→ We design and implement *Hyrax*, a zkSNARK for "parallel" arithmetic circuit satisfiability:

for \mathcal{V} 's input x, $\exists w : \mathcal{C}(x, w) = 1$ (and \mathcal{P} knows w)

→ We evaluate Hyrax and five other ZK systems. We find that:

→ We design and implement *Hyrax*, a zkSNARK for "parallel" arithmetic circuit satisfiability:

for \mathcal{V} 's input x, $\exists w : \mathcal{C}(x, w) = 1$ (and \mathcal{P} knows w)

→ We evaluate Hyrax and five other ZK systems.
We find that:

Hyrax's proofs are small:

to get smaller, you have to pay more computation.

→ We design and implement *Hyrax*, a zkSNARK for "parallel" arithmetic circuit satisfiability:

for \mathcal{V} 's input x, $\exists w : \mathcal{C}(x, w) = 1$ (and \mathcal{P} knows w)

→ We evaluate Hyrax and five other ZK systems. We find that:

Hyrax's proofs are small:

to get smaller, you have to pay more computation. Hyrax is fast:

to get faster, you have to accept bigger proofs.

→ We design and implement *Hyrax*, a zkSNARK for "parallel" arithmetic circuit satisfiability:

for \mathcal{V} 's input x, $\exists w : \mathcal{C}(x, w) = 1$ (and \mathcal{P} knows w)

→ We evaluate Hyrax and five other ZK systems.
We find that:

Hyrax's proofs are small:

to get smaller, you have to pay more computation. Hyrax is fast:

to get faster, you have to accept bigger proofs.

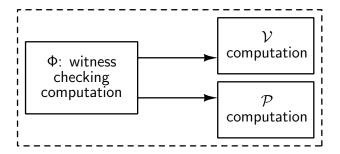
Hyrax is one useful point in a large tradeoff space

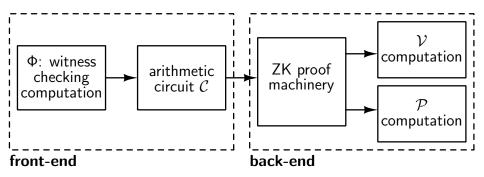
Roadmap

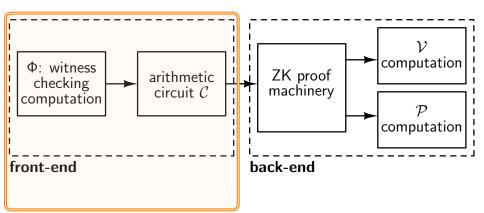
1. General-purpose ZK proof systems

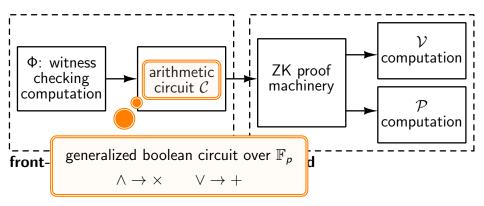
2. Hyrax at a high level

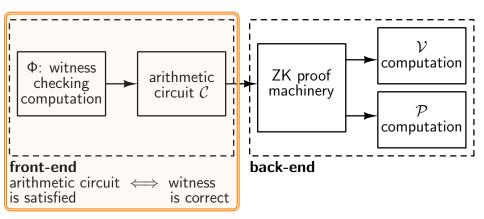
3. Evaluation

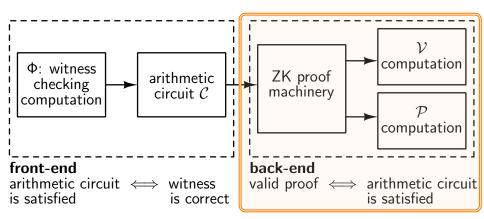






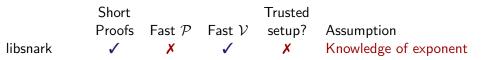






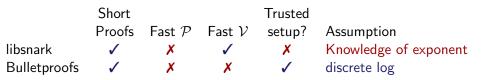
Linear PCPs [IK007,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPR13,...]

• Pinocchio [PGHR13], libsnark [BCTV14]



Linear PCPs [IK007,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPR13,...]

- Pinocchio [PGHR13], libsnark [BCTV14]
- [BCCGP16], Bulletproofs [BBBPWM18]

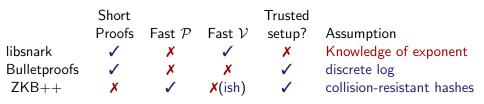


Linear PCPs [IK007,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPR13,...]

- Pinocchio [PGHR13], libsnark [BCTV14]
- [BCCGP16], Bulletproofs [BBBPWM18]

Multiparty computation-in-the-head [IKOS07]

• ZKBoo [GMO16], ZKB++ [CDGORRSZ17]

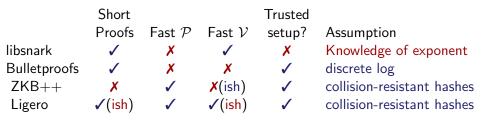


Linear PCPs [IK007,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPR13,...]

- Pinocchio [PGHR13], libsnark [BCTV14]
- [BCCGP16], Bulletproofs [BBBPWM18]

Multiparty computation-in-the-head [IKOS07]

- ZKBoo [GMO16], ZKB++ [CDGORRSZ17]
- Ligero [AHIV17]



- Linear PCPs [IK007,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPR13,...]
- Pinocchio [PGHR13], libsnark [BCTV14]
- [BCCGP16], Bulletproofs [BBBPWM18]

Multiparty computation-in-the-head [IKOS07]

- ZKBoo [GMO16], ZKB++ [CDGORRSZ17]
- Ligero [AHIV17]

Short PCPs [Kil94,Mic00,BS08,BCN16,RRR16,BBC+17,BBHR17,...]

• libSTARK [BBHR18]

	Short			Trusted	
	Proofs	$Fast\ \mathcal{P}$	$Fast\ \mathcal{V}$	setup?	Assumption
libsnark	1	×	\checkmark	×	Knowledge of exponent
Bulletproofs	1	×	×	\checkmark	discrete log
ZKB++	×	\checkmark	X (ish)	\checkmark	collision-resistant hashes
Ligero	✓(ish)	\checkmark	✓(ish)	\checkmark	collision-resistant hashes
libSTARK	1	×	1	1	Reed-Solomon conjecture

Roadmap

1. General-purpose ZK proof systems

2. Hyrax at a high level

3. Evaluation

Hyrax: a ZK argument from Interactive Proofs (IPs)

Hyrax builds on the interactive proofs of GKR/CMT

[Bab85,GMR89,GKR08,CMT12,Tha13,WJBsTWW17,ZGKPP17,...]

Hyrax: a ZK argument from Interactive Proofs (IPs)

Hyrax builds on the interactive proofs of GKR/CMT [Bab85,GMR89,GKR08,CMT12,Tha13,WJBsTWW17,ZGKPP17,...]

We compile Hyrax's IP to a ZK argument using the techniques of [BGGHKMR88] and [CD98]...

Hyrax: a ZK argument from Interactive Proofs (IPs)

Hyrax builds on the interactive proofs of GKR/CMT [Bab85,GMR89,GKR08,CMT12,Tha13,WJBsTWW17,ZGKPP17,...]

We compile Hyrax's IP to a ZK argument using the techniques of [BGGHKMR88] and [CD98]...

 \ldots plus refinements that result in multiple orders of magnitude savings in ${\cal V}$ time and proof size.

Hyrax: a ZK argument from Interactive Proofs (IPs)

Hyrax builds on the interactive proofs of GKR/CMT [Bab85,GMR89,GKR08,CMT12,Tha13,WJBsTWW17,ZGKPP17,...]

We compile Hyrax's IP to a ZK argument using the techniques of [BGGHKMR88] and [CD98]...

 \ldots plus refinements that result in multiple orders of magnitude savings in ${\cal V}$ time and proof size.

High-level idea: Replace each of \mathcal{P} 's messages in the IP with a *commitment* to the message; \mathcal{V} runs checks "under the commitments."

Cryptographic commitments

Sender computes $C \leftarrow \text{Com}(m)$, sends to receiver. Later, sender can open C, convincing the receiver that m was the committed message. Cryptographic commitments

Sender computes $C \leftarrow \text{Com}(m)$, sends to receiver. Later, sender can open C, convincing the receiver that m was the committed message.

In general, Com(m) has two important properties: Hiding: C reveals nothing about m.

Binding: Cannot produce $m' \neq m$ s.t. C = Com(m')

Cryptographic commitments (with a linear homomorphism) Sender computes $C \leftarrow Com(m)$, sends to receiver. Later, sender can open C, convincing the receiver that m was the committed message.

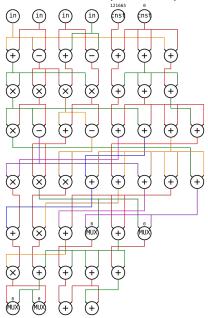
In general, Com(m) has two important properties: Hiding: C reveals nothing about m.

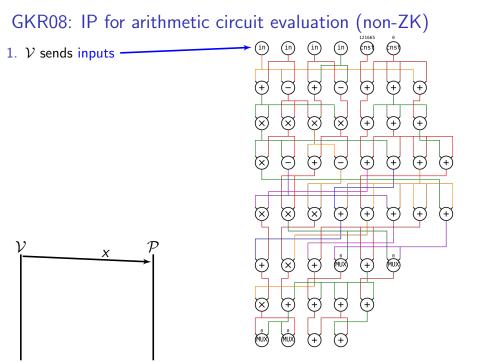
Binding: Cannot produce $m' \neq m$ s.t. C = Com(m')

We also require a *linear homomorphism*, \odot : given $C_0 \leftarrow \text{Com}(m_0), C_1 \leftarrow \text{Com}(m_1)$, we have $C_0 \odot C_1 \triangleq \text{Com}(m_0 + m_1)$ $C_1^k \triangleq C_1 \odot \cdots \odot C_1 = \text{Com}(k \cdot m_1)$

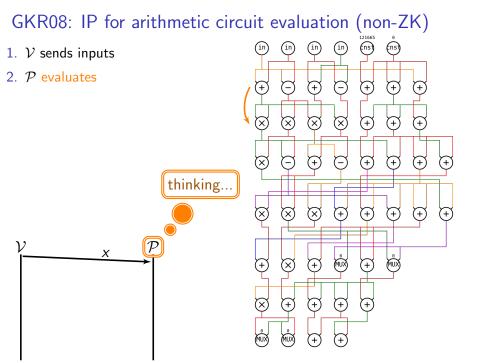
The Pedersen commitment has this property.

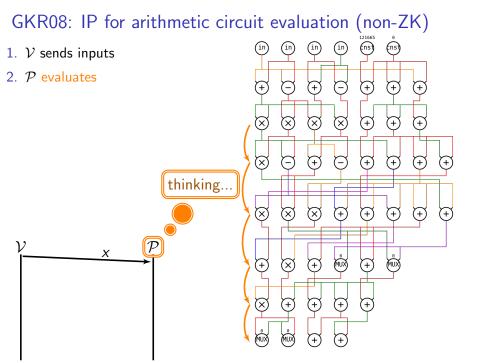
Witness checker must be expressed as a *layered* AC.



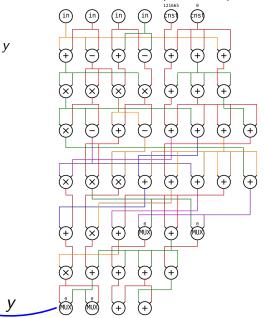


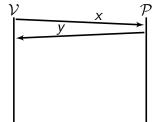
GKR08: IP for arithmetic circuit evaluation (non-ZK) (ns) (in (in) (cns² 1. \mathcal{V} sends inputs 2. \mathcal{P} evaluates (+) + (+ \bigotimes (\mathbf{x}) \otimes + (+)(+) \mathbf{x} (+(+)_ + + (+) thinking... (\mathbf{x}) $(\times$ (+)(+) (\mp) + \mathcal{P} ν х $\left(\mathbf{x} \right)$ MUX (+ MUX 7 Ŧ 7 + MUX (+



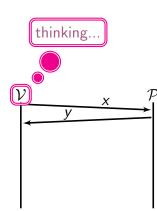


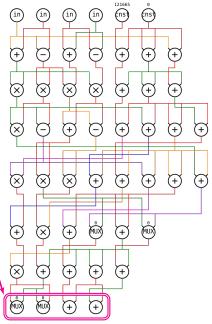
- 1. ${\mathcal V}$ sends inputs
- 2. \mathcal{P} evaluates, returns output y



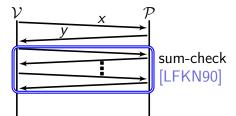


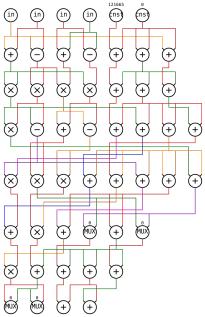
- 1. ${\mathcal V}$ sends inputs
- 2. \mathcal{P} evaluates, returns output y
- V constructs polynomial relating y to last layer's input wires





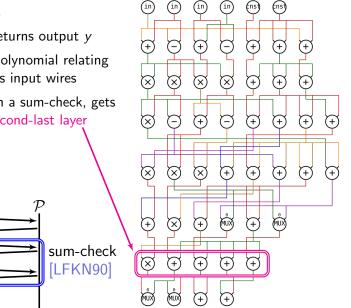
- 1. ${\mathcal V}$ sends inputs
- 2. \mathcal{P} evaluates, returns output y
- V constructs polynomial relating y to last layer's input wires
- 4. ${\mathcal V}$ engages ${\mathcal P}$ in a sum-check



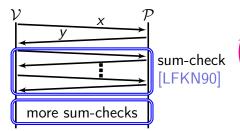


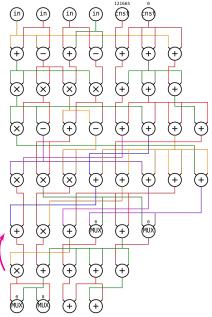
- 1. \mathcal{V} sends inputs
- 2. \mathcal{P} evaluates, returns output y
- 3. \mathcal{V} constructs polynomial relating y to last layer's input wires
- 4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer

х

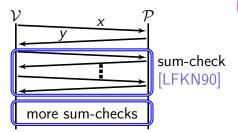


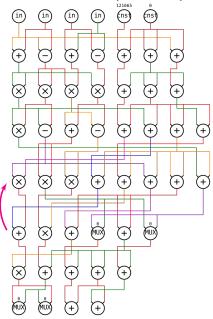
- 1. ${\mathcal V}$ sends inputs
- 2. \mathcal{P} evaluates, returns output y
- V constructs polynomial relating y to last layer's input wires
- 4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer
- 5. \mathcal{V} iterates



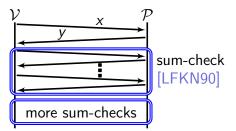


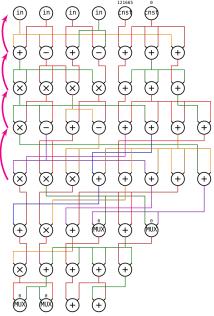
- 1. ${\mathcal V}$ sends inputs
- 2. \mathcal{P} evaluates, returns output y
- V constructs polynomial relating y to last layer's input wires
- 4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer
- 5. \mathcal{V} iterates



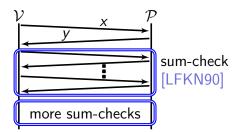


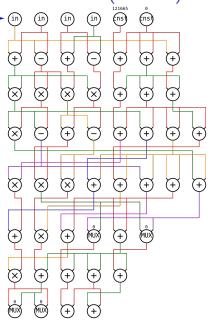
- 1. ${\mathcal V}$ sends inputs
- 2. \mathcal{P} evaluates, returns output y
- V constructs polynomial relating y to last layer's input wires
- 4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer
- 5. \mathcal{V} iterates



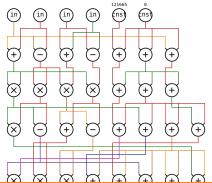


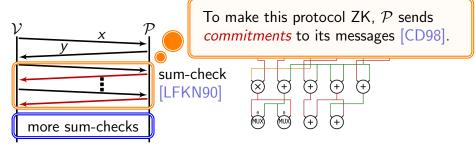
- 1. ${\mathcal V}$ sends inputs
- 2. \mathcal{P} evaluates, returns output y
- V constructs polynomial relating y to last layer's input wires
- 4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer
- 5. \mathcal{V} iterates, gets claim about inputs, which it can check





- 1. ${\mathcal V}$ sends inputs
- 2. \mathcal{P} evaluates, returns output y
- V constructs polynomial relating y to last layer's input wires
- 4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer
- 5. \mathcal{V} iterates, gets claim about inputs, which it can check

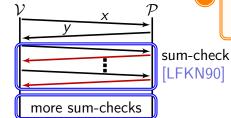




- 1. ${\mathcal V}$ sends inputs
- 2. \mathcal{P} evaluates, returns output y
- V constructs polynomial relating y to last layer's input wires
- 4. \mathcal{V} engages \mathcal{P} in a sum-check, gets claim about second-last layer
- 5. V iterates, gets claim about inputs, which it can check

+ + + + (\mathbf{x}) (\mathbf{x}) (\mathbf{X}) + (+(+)(+) \sim In a ZK proof, AC inputs include w, so \mathcal{V} cannot check them directly!

+



 \mathcal{V} 's final check is to evaluate a polynomial \widetilde{m} that encodes input x and witness w.

 \mathcal{V} 's final check is to evaluate a polynomial \widetilde{m} that encodes input x and witness w.

Instead of having \mathcal{V} evaluate \widetilde{m} directly: 1. \mathcal{P} commits to \widetilde{m} at the start of the protocol

 \mathcal{V} 's final check is to evaluate a polynomial \widetilde{m} that encodes input x and witness w.

Instead of having \mathcal{V} evaluate \widetilde{m} directly:

- 1. ${\mathcal P}$ commits to \widetilde{m} at the start of the protocol
- 2. ${\mathcal P}$ and ${\mathcal V}$ run the interactive proof

 \mathcal{V} 's final check is to evaluate a polynomial \widetilde{m} that encodes input x and witness w.

Instead of having \mathcal{V} evaluate \widetilde{m} directly:

- 1. $\mathcal P$ commits to $\widetilde m$ at the start of the protocol
- 2. ${\mathcal P}$ and ${\mathcal V}$ run the interactive proof
- 3. \mathcal{P} evaluates $\widetilde{m}(\cdot)$ at a point of \mathcal{V} 's choosing...

 \mathcal{V} 's final check is to evaluate a polynomial \widetilde{m} that encodes input x and witness w.

Instead of having \mathcal{V} evaluate \widetilde{m} directly:

- 1. ${\mathcal P}$ commits to \widetilde{m} at the start of the protocol
- 2. ${\mathcal P}$ and ${\mathcal V}$ run the interactive proof
- 3. \mathcal{P} evaluates $\widetilde{m}(\cdot)$ at a point of \mathcal{V} 's choosing...
- 4. ... and proves consistency with initial commitment.

 \mathcal{V} 's final check is to evaluate a polynomial \widetilde{m} that encodes input x and witness w.

Instead of having \mathcal{V} evaluate \widetilde{m} directly:

- 1. ${\mathcal P}$ commits to \widetilde{m} at the start of the protocol
- 2. ${\mathcal P}$ and ${\mathcal V}$ run the interactive proof
- 3. \mathcal{P} evaluates $\widetilde{m}(\cdot)$ at a point of \mathcal{V} 's choosing...
- 4. ... and proves consistency with initial commitment.

Hyrax uses a new polynomial commitment scheme tailored to *multilinear*^{*} polynomials like \tilde{m} *multivariate, linear in each variable

$$\widetilde{m}(r) \triangleq L \cdot T \cdot R^T$$

 \mathcal{V} can compute L and R from r, and

$$\mathcal{T} \triangleq \begin{bmatrix} w_0 & w_\ell & \cdots & w_{\ell^2 - \ell} \\ w_1 & w_{\ell+1} & \cdots & w_{\ell^2 - \ell+1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{\ell-1} & w_{2 \cdot \ell - 1} & \cdots & w_{\ell^2 - 1} \end{bmatrix}$$

$$\widetilde{m}(r) \triangleq L \cdot T \cdot R^T$$

 \mathcal{V} can compute L and R from r, and

$$\mathcal{T} \triangleq \begin{bmatrix} w_0 & w_\ell & \cdots & w_{\ell^2 - \ell} \\ w_1 & w_{\ell+1} & \cdots & w_{\ell^2 - \ell+1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{\ell-1} & w_{2 \cdot \ell - 1} & \cdots & w_{\ell^2 - 1} \end{bmatrix}$$

Naive: \mathcal{P} sends commitments to each w_i

$$\widetilde{m}(r) \triangleq L \cdot T \cdot R^T$$

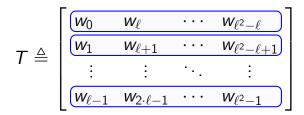
 \mathcal{V} can compute L and R from r, and

$$T \triangleq \begin{bmatrix} w_0 & w_\ell & \cdots & w_{\ell^2 - \ell} \\ w_1 & w_{\ell+1} & \cdots & w_{\ell^2 - \ell+1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{\ell-1} & w_{2 \cdot \ell - 1} & \cdots & w_{\ell^2 - 1} \end{bmatrix}$$

Naive: *P* sends commitments to each *w_i*✗ Proof size and *V* time are both O(|*w*|)!

$$\widetilde{m}(r) \triangleq L \cdot T \cdot R^T$$

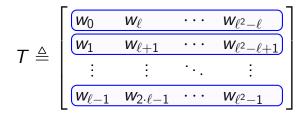
 \mathcal{V} can compute L and R from r, and



Better: \mathcal{P} sends a *multi-commitment* to each row: $T_0 = \text{Com}(w_0, w_\ell, \dots, w_{\ell^2-\ell})$ [Gro09]

$$\widetilde{m}(r) \triangleq L \cdot T \cdot R^T$$

 \mathcal{V} can compute L and R from r, and



Better: \mathcal{P} sends a *multi-commitment* to each row: $T_0 = \text{Com}(w_0, w_\ell, \dots, w_{\ell^2 - \ell})$ [Gro09] Pedersen commitments: vector-wise homomorphism.

$$\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}$$

$$T \triangleq \begin{bmatrix} w_{0} & w_{\ell} & \cdots & w_{\ell^{2}-\ell} \\ w_{1} & w_{\ell+1} & \cdots & w_{\ell^{2}-\ell+1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{\ell-1} & w_{2\cdot\ell-1} & \cdots & w_{\ell^{2}-1} \end{bmatrix}$$

1. \mathcal{V} uses homomorphism to compute $Com(L \cdot T)$.

$$\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}$$

$$T \triangleq \begin{bmatrix} w_{0} & w_{\ell} & \cdots & w_{\ell^{2}-\ell} \\ w_{1} & w_{\ell+1} & \cdots & w_{\ell^{2}-\ell+1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{\ell-1} & w_{2\cdot\ell-1} & \cdots & w_{\ell^{2}-1} \end{bmatrix}$$

V uses homomorphism to compute Com(*L* · *T*).
 P sends a commitment to an evaluation of *m̃*(*r*)

$$\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}$$

$$T \triangleq \begin{bmatrix} w_{0} & w_{\ell} & \cdots & w_{\ell^{2}-\ell} \\ w_{1} & w_{\ell+1} & \cdots & w_{\ell^{2}-\ell+1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{\ell-1} & w_{2\cdot\ell-1} & \cdots & w_{\ell^{2}-1} \end{bmatrix}$$

V uses homomorphism to compute Com(L · T).
 P sends a commitment to an evaluation of m̃(r)
 P uses a *dot-product argument* to convince V that Com(m̃(r)) is consistent with R and Com(L · T).

$$\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}$$

$$T \triangleq \begin{bmatrix} w_{0} & w_{\ell} & \cdots & w_{\ell^{2}-\ell} \\ w_{1} & w_{\ell+1} & \cdots & w_{\ell^{2}-\ell+1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{\ell-1} & w_{2\cdot\ell-1} & \cdots & w_{\ell^{2}-1} \end{bmatrix}$$

Dot-product argument has $2 \log |R|$ communication (adapted from Bulletproofs [BBBPWM18])

$$\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}$$

$$T \triangleq \begin{bmatrix} w_{0} & w_{\ell} & \cdots & w_{\ell^{2}-\ell} \\ w_{1} & w_{\ell+1} & \cdots & w_{\ell^{2}-\ell+1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{\ell-1} & w_{2\cdot\ell-1} & \cdots & w_{\ell^{2}-1} \end{bmatrix}$$

Dot-product argument has $2 \log |R|$ communication (adapted from Bulletproofs [BBBPWM18])

 \mathcal{P} sends one commitment per row: $S_{\mathcal{P}} \in O\left(\sqrt{|w|}\right)$

$$\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}$$

$$T \triangleq \begin{bmatrix} w_{0} & w_{\ell} & \cdots & w_{\ell^{2}-\ell} \\ w_{1} & w_{\ell+1} & \cdots & w_{\ell^{2}-\ell+1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{\ell-1} & w_{2\cdot\ell-1} & \cdots & w_{\ell^{2}-1} \end{bmatrix}$$

Dot-product argument has $2 \log |R|$ communication (adapted from Bulletproofs [BBBPWM18])

 \mathcal{P} sends one commitment per row: $\mathsf{S}_{\mathcal{P}} \in \mathsf{O}ig(\sqrt{|w|}ig)$

 \mathcal{V} 's time is O(|R| + |L|): T $_{\mathcal{V}} \in O\left(\sqrt{|w|}\right)$

A polynomial commitment for \widetilde{m} (cont'd)

$$\widetilde{m}(r) \triangleq L \cdot T \cdot R^{T}$$

$$T \triangleq \begin{bmatrix} w_{0} & w_{\ell} & \cdots & w_{\ell^{2}-\ell} \\ w_{1} & w_{\ell+1} & \cdots & w_{\ell^{2}-\ell+1} \\ \vdots & \vdots & \ddots & \vdots \\ w_{\ell-1} & w_{2\cdot\ell-1} & \cdots & w_{\ell^{2}-1} \end{bmatrix}$$

Dot-product argument has $2 \log |R|$ communication (adapted from Bulletproofs [BBBPWM18])

 \mathcal{P} sends one commitment per row: $S_{\mathcal{P}} \in O\left(\sqrt{|w|}\right)$

$$\mathcal{V}$$
's time is O $(|R|+|L|)$: $\mathsf{T}_\mathcal{V}\in\mathsf{O}\Big(\sqrt{|w|}\Big)$

Can choose $S_{\mathcal{P}} \cdot T_{\mathcal{V}} \in O(|w|)$ s.t. $T_{\mathcal{V}} \in \Omega(\sqrt{|w|})$

Use Fiat-Shamir heuristic [FS86] to make non-interactive (in the random oracle model)

Use Fiat-Shamir heuristic [FS86] to make non-interactive (in the random oracle model)

Tailored ZK transform [CD98] using multi-commitments \rightarrow reduces proof size and \mathcal{V} time

Use Fiat-Shamir heuristic [FS86] to make non-interactive (in the random oracle model)

Tailored ZK transform [CD98] using multi-commitments \rightarrow reduces proof size and \mathcal{V} time

Redistribution layer

 \rightarrow lets Hyrax extract parallelism from serial computations

Use Fiat-Shamir heuristic [FS86] to make non-interactive (in the random oracle model)

Tailored ZK transform [CD98] using multi-commitments \rightarrow reduces proof size and \mathcal{V} time

Redistribution layer

→ lets Hyrax extract parallelism from serial computations

Gir⁺⁺ IP: Giraffe [WJBsTWW17] plus a tweak [CFS17] → reduces proof size

Roadmap

1. General-purpose ZK proof systems

2. Hyrax at a high level

3. Evaluation

Evaluation overview

Baselines:

- ◄ BCCGP-sqrt [BCCGP16]—re-implemented
- ▶ Bulletproofs [BBBPWM18]—re-implemented
- ZKB++ [CDGORRSZ17]—ran authors' implementation
- ♦ Ligero [AHIV17]—ran authors' implementation
- IibSTARK [BBHR18]—ran authors' implementation
- Hyrax-1/3—T has ℓ rows, ℓ^2 columns
- ★ Hyrax-naive—no refinements

Evaluation overview

Baselines:

- ◄ BCCGP-sqrt [BCCGP16]—re-implemented
- ▶ Bulletproofs [BBBPWM18]—re-implemented
- ZKB++ [CDGORRSZ17]—ran authors' implementation
- ♦ Ligero [AHIV17]—ran authors' implementation
- IibSTARK [BBHR18]—ran authors' implementation
- Hyrax-1/3—T has ℓ rows, ℓ^2 columns
- ★ Hyrax-naive—no refinements

Parameters: \approx 90-bit security (M191 elliptic curve)

Evaluation overview

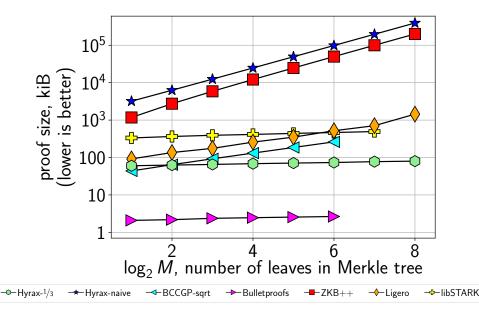
Baselines:

- ◄ BCCGP-sqrt [BCCGP16]—re-implemented
- ▶ Bulletproofs [BBBPWM18]—re-implemented
- ZKB++ [CDGORRSZ17]—ran authors' implementation
- ♦ Ligero [AHIV17]—ran authors' implementation
- IibSTARK [BBHR18]—ran authors' implementation
- Hyrax-1/3—T has ℓ rows, ℓ^2 columns
- ★ Hyrax-naive—no refinements

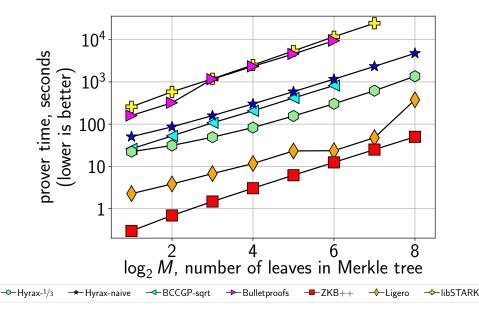
Parameters: \approx 90-bit security (M191 elliptic curve)

Benchmark: SHA-256 Merkle tree, varying number of leaves

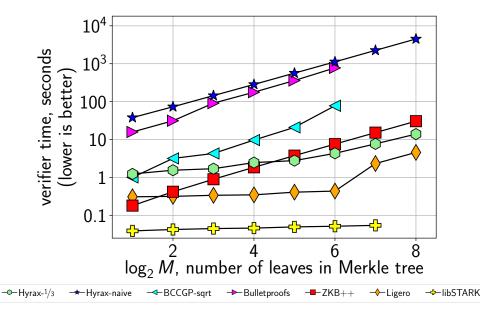
Proof size



 \mathcal{P} time



$\mathcal V$ time



We design, implement, and evaluate *Hyrax*, a zkSNARK for "data-parallel" AC satisfiability

We design, implement, and evaluate *Hyrax*, a zkSNARK for "data-parallel" AC satisfiability

✓ Hyrax's proofs are small:

to get smaller, you have to pay more computation.

We design, implement, and evaluate *Hyrax*, a zkSNARK for "data-parallel" AC satisfiability

- ✓ Hyrax's proofs are small: to get smaller, you have to pay more computation.
- ✓ Hyrax is fast:

to get faster, you have to accept bigger proofs.

We design, implement, and evaluate *Hyrax*, a zkSNARK for "data-parallel" AC satisfiability

- ✓ Hyrax's proofs are small: to get smaller, you have to pay more computation.
- ✓ Hyrax is fast:

to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space. There is still plenty of room for improvement!

We design, implement, and evaluate *Hyrax*, a zkSNARK for "data-parallel" AC satisfiability

- ✓ Hyrax's proofs are small: to get smaller, you have to pay more computation.
- ✓ Hyrax is fast:

to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space. There is still plenty of room for improvement!

https://hyrax.crypto.fyi
https://github.com/hyraxZK