
Doubly-efficient zkSNARKs without trusted setup

Riad S. Wahby?, Ioanna Tzialla◦,
abhi shelat†, Justin Thaler‡, and Michael Walfish◦

?Stanford University
◦New York University
†Northeastern University
‡Georgetown University

May 23rd, 2018

zkSNARK

Argument A “proof”. . .

of knowledge . . . that you know a secret, and. . .

Zero knowledge . . . it doesn’t reveal the secret.

Succinct It’s short. . .

Non-interactive . . . and it can be written down. . .

(Publicly verifiable) . . . so that anyone can check it.

zkSNARK

Argument A “proof”. . .

of knowledge . . . that you know a secret, and. . .

Zero knowledge . . . it doesn’t reveal the secret.

Succinct It’s short. . .

Non-interactive . . . and it can be written down. . .

(Publicly verifiable) . . . so that anyone can check it.

zkSNARK

Argument A “proof”. . .

of knowledge . . . that you know a secret, and. . .

Zero knowledge . . . it doesn’t reveal the secret.

Succinct It’s short. . .

Non-interactive . . . and it can be written down. . .

(Publicly verifiable) . . . so that anyone can check it.

zkSNARK

Argument A “proof”. . .

of knowledge . . . that you know a secret, and. . .

Zero knowledge . . . it doesn’t reveal the secret.

Succinct It’s short. . .

Non-interactive . . . and it can be written down. . .

(Publicly verifiable) . . . so that anyone can check it.

zkSNARK

Argument A “proof”. . .

of knowledge . . . that you know a secret, and. . .

Zero knowledge . . . it doesn’t reveal the secret.

Succinct It’s short. . .

Non-interactive . . . and it can be written down. . .

(Publicly verifiable) . . . so that anyone can check it.

zkSNARK

Argument A “proof”. . .

of knowledge . . . that you know a secret, and. . .

Zero knowledge . . . it doesn’t reveal the secret.

Succinct It’s short. . .

Non-interactive . . . and it can be written down. . .

(Publicly verifiable) . . . so that anyone can check it.

zkSNARKs: Costs and desiderata

Proof size

Prover (P) time

Verifier (V) time

Cryptographic assumptions

Trusted setup?

zkSNARKs: Costs and desiderata

Proof size

Prover (P) time

Verifier (V) time

Cryptographic assumptions

Trusted setup?

zkSNARKs: Costs and desiderata

Proof size

Prover (P) time

Verifier (V) time

Cryptographic assumptions

Trusted setup?

zkSNARKs: Costs and desiderata

Proof size

Prover (P) time

Verifier (V) time

Cryptographic assumptions

Trusted setup?

zkSNARKs: Costs and desiderata

Proof size

Prover (P) time

Verifier (V) time

Cryptographic assumptions

Trusted setup?

Our contributions

Ô We design and implement Hyrax, a zkSNARK
for “parallel” arithmetic circuit satisfiability:

for V ’s input x , ∃w : C(x ,w) = 1 (and P knows w)

Proof size is sub-linear in |C| and |w |
Prover time is linear in |C|
Verifier time is sublinear in |C| and |w |
Good constants: concrete costs are low

Cryptographic assumptions: discrete log

No trusted setup

Hyrax is one useful point in a large tradeoff space

Our contributions

Ô We design and implement Hyrax, a zkSNARK
for “parallel” arithmetic circuit satisfiability:

for V ’s input x , ∃w : C(x ,w) = 1 (and P knows w)

Proof size is sub-linear in |C| and |w |
Prover time is linear in |C|
Verifier time is sublinear in |C| and |w |

Good constants: concrete costs are low

Cryptographic assumptions: discrete log

No trusted setup

Hyrax is one useful point in a large tradeoff space

Our contributions

Ô We design and implement Hyrax, a zkSNARK
for “parallel” arithmetic circuit satisfiability:

for V ’s input x , ∃w : C(x ,w) = 1 (and P knows w)

Proof size is sub-linear in |C| and |w |
Prover time is linear in |C|
Verifier time is sublinear in |C| and |w |
Good constants: concrete costs are low

Cryptographic assumptions: discrete log

No trusted setup

Hyrax is one useful point in a large tradeoff space

Our contributions

Ô We design and implement Hyrax, a zkSNARK
for “parallel” arithmetic circuit satisfiability:

for V ’s input x , ∃w : C(x ,w) = 1 (and P knows w)

Proof size is sub-linear in |C| and |w |
Prover time is linear in |C|
Verifier time is sublinear in |C| and |w |
Good constants: concrete costs are low

Cryptographic assumptions: discrete log

No trusted setup

Hyrax is one useful point in a large tradeoff space

Our contributions

Ô We design and implement Hyrax, a zkSNARK
for “parallel” arithmetic circuit satisfiability:

for V ’s input x , ∃w : C(x ,w) = 1 (and P knows w)

Ô We evaluate Hyrax and five other ZK systems.

We find that:

Hyrax’s proofs are small:
to get smaller, you have to pay more computation.

Hyrax is fast:
to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space

Our contributions

Ô We design and implement Hyrax, a zkSNARK
for “parallel” arithmetic circuit satisfiability:

for V ’s input x , ∃w : C(x ,w) = 1 (and P knows w)

Ô We evaluate Hyrax and five other ZK systems.

We find that:

Hyrax’s proofs are small:
to get smaller, you have to pay more computation.

Hyrax is fast:
to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space

Our contributions

Ô We design and implement Hyrax, a zkSNARK
for “parallel” arithmetic circuit satisfiability:

for V ’s input x , ∃w : C(x ,w) = 1 (and P knows w)

Ô We evaluate Hyrax and five other ZK systems.

We find that:

Hyrax’s proofs are small:
to get smaller, you have to pay more computation.

Hyrax is fast:
to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space

Our contributions

Ô We design and implement Hyrax, a zkSNARK
for “parallel” arithmetic circuit satisfiability:

for V ’s input x , ∃w : C(x ,w) = 1 (and P knows w)

Ô We evaluate Hyrax and five other ZK systems.

We find that:

Hyrax’s proofs are small:
to get smaller, you have to pay more computation.

Hyrax is fast:
to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space

Roadmap

1. General-purpose ZK proof systems

2. Hyrax at a high level

3. Evaluation

General-purpose ZK proof systems for NP

On input x , P convinces V that Φ(x ,w) = 1
(for a witness w that P knows)

PSfrag replacements

Φ: witness
checking

computation

V

computation

V

computation

P

computation

P

computation
inputs
outputs,
proof

generalized boolean circuit over Fp

∧ → × ∨ → +

General-purpose ZK proof systems for NP

On input x , P convinces V that Φ(x ,w) = 1
(for a witness w that P knows)

PSfrag replacements

Φ: witness
checking

computation

arithmetic
circuit C

ZK proof
machinery

front-end back-end

V

computation

P

computation

generalized boolean circuit over Fp

∧ → × ∨ → +

General-purpose ZK proof systems for NP

On input x , P convinces V that Φ(x ,w) = 1
(for a witness w that P knows)

PSfrag replacements

Φ: witness
checking

computation

arithmetic
circuit C

ZK proof
machinery

front-end back-end

V

computation

P

computation

generalized boolean circuit over Fp

∧ → × ∨ → +

General-purpose ZK proof systems for NP

On input x , P convinces V that Φ(x ,w) = 1
(for a witness w that P knows)

PSfrag replacements

Φ: witness
checking

computation

arithmetic
circuit C

ZK proof
machinery

front-end back-end

V

computation

P

computation

generalized boolean circuit over Fp

∧ → × ∨ → +

General-purpose ZK proof systems for NP

On input x , P convinces V that Φ(x ,w) = 1
(for a witness w that P knows)

PSfrag replacements

Φ: witness
checking

computation

arithmetic
circuit C

ZK proof
machinery

front-end

arithmetic circuit ⇐⇒ witness
is satisfied is correct

back-end

V

computation

P

computation

generalized boolean circuit over Fp

∧ → × ∨ → +

General-purpose ZK proof systems for NP

On input x , P convinces V that Φ(x ,w) = 1
(for a witness w that P knows)

PSfrag replacements

Φ: witness
checking

computation

arithmetic
circuit C

ZK proof
machinery

front-end

arithmetic circuit ⇐⇒ witness
is satisfied is correct

back-end

valid proof ⇐⇒ arithmetic circuit
is satisfied

V

computation

P

computation

generalized boolean circuit over Fp

∧ → × ∨ → +

Existing systems use a wide range of proof machinery

Linear PCPs [IKO07,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPR13,. . .]

• Pinocchio [PGHR13], libsnark [BCTV14]

• [BCCGP16], Bulletproofs [BBBPWM18]

Multiparty computation–in-the-head [IKOS07]

• ZKBoo [GMO16], ZKB++ [CDGORRSZ17]
• Ligero [AHIV17]

Short PCPs [Kil94,Mic00,BS08,BCN16,RRR16,BBC+17,BBHR17,. . .]

• libSTARK [BBHR18]

Short
Proofs Fast P Fast V

Trusted
setup? Assumption

libsnark 3 7 3 7 Knowledge of exponent

Bulletproofs 3 7 7 3 discrete log
ZKB++ 7 3 7(ish) 3 collision-resistant hashes
Ligero 3(ish) 3 3(ish) 3 collision-resistant hashes
libSTARK 3 7 3 3 Reed-Solomon conjecture

Existing systems use a wide range of proof machinery

Linear PCPs [IKO07,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPR13,. . .]

• Pinocchio [PGHR13], libsnark [BCTV14]
• [BCCGP16], Bulletproofs [BBBPWM18]

Multiparty computation–in-the-head [IKOS07]

• ZKBoo [GMO16], ZKB++ [CDGORRSZ17]
• Ligero [AHIV17]

Short PCPs [Kil94,Mic00,BS08,BCN16,RRR16,BBC+17,BBHR17,. . .]

• libSTARK [BBHR18]

Short
Proofs Fast P Fast V

Trusted
setup? Assumption

libsnark 3 7 3 7 Knowledge of exponent
Bulletproofs 3 7 7 3 discrete log

ZKB++ 7 3 7(ish) 3 collision-resistant hashes
Ligero 3(ish) 3 3(ish) 3 collision-resistant hashes
libSTARK 3 7 3 3 Reed-Solomon conjecture

Existing systems use a wide range of proof machinery

Linear PCPs [IKO07,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPR13,. . .]

• Pinocchio [PGHR13], libsnark [BCTV14]
• [BCCGP16], Bulletproofs [BBBPWM18]

Multiparty computation–in-the-head [IKOS07]

• ZKBoo [GMO16], ZKB++ [CDGORRSZ17]

• Ligero [AHIV17]

Short PCPs [Kil94,Mic00,BS08,BCN16,RRR16,BBC+17,BBHR17,. . .]

• libSTARK [BBHR18]

Short
Proofs Fast P Fast V

Trusted
setup? Assumption

libsnark 3 7 3 7 Knowledge of exponent
Bulletproofs 3 7 7 3 discrete log
ZKB++ 7 3 7(ish) 3 collision-resistant hashes

Ligero 3(ish) 3 3(ish) 3 collision-resistant hashes
libSTARK 3 7 3 3 Reed-Solomon conjecture

Existing systems use a wide range of proof machinery

Linear PCPs [IKO07,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPR13,. . .]

• Pinocchio [PGHR13], libsnark [BCTV14]
• [BCCGP16], Bulletproofs [BBBPWM18]

Multiparty computation–in-the-head [IKOS07]

• ZKBoo [GMO16], ZKB++ [CDGORRSZ17]
• Ligero [AHIV17]

Short PCPs [Kil94,Mic00,BS08,BCN16,RRR16,BBC+17,BBHR17,. . .]

• libSTARK [BBHR18]

Short
Proofs Fast P Fast V

Trusted
setup? Assumption

libsnark 3 7 3 7 Knowledge of exponent
Bulletproofs 3 7 7 3 discrete log
ZKB++ 7 3 7(ish) 3 collision-resistant hashes
Ligero 3(ish) 3 3(ish) 3 collision-resistant hashes

libSTARK 3 7 3 3 Reed-Solomon conjecture

Existing systems use a wide range of proof machinery

Linear PCPs [IKO07,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPR13,. . .]

• Pinocchio [PGHR13], libsnark [BCTV14]
• [BCCGP16], Bulletproofs [BBBPWM18]

Multiparty computation–in-the-head [IKOS07]

• ZKBoo [GMO16], ZKB++ [CDGORRSZ17]
• Ligero [AHIV17]

Short PCPs [Kil94,Mic00,BS08,BCN16,RRR16,BBC+17,BBHR17,. . .]

• libSTARK [BBHR18]

Short
Proofs Fast P Fast V

Trusted
setup? Assumption

libsnark 3 7 3 7 Knowledge of exponent
Bulletproofs 3 7 7 3 discrete log
ZKB++ 7 3 7(ish) 3 collision-resistant hashes
Ligero 3(ish) 3 3(ish) 3 collision-resistant hashes
libSTARK 3 7 3 3 Reed-Solomon conjecture

Roadmap

1. General-purpose ZK proof systems

2. Hyrax at a high level

3. Evaluation

Hyrax: a ZK argument from Interactive Proofs (IPs)

Hyrax builds on the interactive proofs of GKR/CMT
[Bab85,GMR89,GKR08,CMT12,Tha13,WJBsTWW17,ZGKPP17,. . .]

We compile Hyrax’s IP to a ZK argument using the
techniques of [BGGHKMR88] and [CD98]. . .

. . . plus refinements that result in multiple orders of
magnitude savings in V time and proof size.

High-level idea: Replace each of P ’s messages in
the IP with a commitment to the message; V runs
checks “under the commitments.”

Hyrax: a ZK argument from Interactive Proofs (IPs)

Hyrax builds on the interactive proofs of GKR/CMT
[Bab85,GMR89,GKR08,CMT12,Tha13,WJBsTWW17,ZGKPP17,. . .]

We compile Hyrax’s IP to a ZK argument using the
techniques of [BGGHKMR88] and [CD98]. . .

. . . plus refinements that result in multiple orders of
magnitude savings in V time and proof size.

High-level idea: Replace each of P ’s messages in
the IP with a commitment to the message; V runs
checks “under the commitments.”

Hyrax: a ZK argument from Interactive Proofs (IPs)

Hyrax builds on the interactive proofs of GKR/CMT
[Bab85,GMR89,GKR08,CMT12,Tha13,WJBsTWW17,ZGKPP17,. . .]

We compile Hyrax’s IP to a ZK argument using the
techniques of [BGGHKMR88] and [CD98]. . .

. . . plus refinements that result in multiple orders of
magnitude savings in V time and proof size.

High-level idea: Replace each of P ’s messages in
the IP with a commitment to the message; V runs
checks “under the commitments.”

Hyrax: a ZK argument from Interactive Proofs (IPs)

Hyrax builds on the interactive proofs of GKR/CMT
[Bab85,GMR89,GKR08,CMT12,Tha13,WJBsTWW17,ZGKPP17,. . .]

We compile Hyrax’s IP to a ZK argument using the
techniques of [BGGHKMR88] and [CD98]. . .

. . . plus refinements that result in multiple orders of
magnitude savings in V time and proof size.

High-level idea: Replace each of P ’s messages in
the IP with a commitment to the message; V runs
checks “under the commitments.”

Cryptographic commitments

Sender computes C ← Com(m), sends to receiver.
Later, sender can open C , convincing the receiver
that m was the committed message.

In general, Com(m) has two important properties:

Hiding: C reveals nothing about m.

Binding: Cannot produce m′ 6= m s.t. C = Com(m′)

We also require a linear homomorphism, �:
given C0 ← Com(m0),C1 ← Com(m1), we have

C0 � C1 , Com(m0 +m1)

C k
1 , C1 � · · · � C1 = Com(k ·m1)

The Pedersen commitment has this property.

Cryptographic commitments

Sender computes C ← Com(m), sends to receiver.
Later, sender can open C , convincing the receiver
that m was the committed message.

In general, Com(m) has two important properties:

Hiding: C reveals nothing about m.

Binding: Cannot produce m′ 6= m s.t. C = Com(m′)

We also require a linear homomorphism, �:
given C0 ← Com(m0),C1 ← Com(m1), we have

C0 � C1 , Com(m0 +m1)

C k
1 , C1 � · · · � C1 = Com(k ·m1)

The Pedersen commitment has this property.

Cryptographic commitments (with a linear homomorphism)

Sender computes C ← Com(m), sends to receiver.
Later, sender can open C , convincing the receiver
that m was the committed message.

In general, Com(m) has two important properties:

Hiding: C reveals nothing about m.

Binding: Cannot produce m′ 6= m s.t. C = Com(m′)

We also require a linear homomorphism, �:
given C0 ← Com(m0),C1 ← Com(m1), we have

C0 � C1 , Com(m0 +m1)

C k
1 , C1 � · · · � C1 = Com(k ·m1)

The Pedersen commitment has this property.

GKR08: IP for arithmetic circuit evaluation (non-ZK)

Witness checker must be
expressed as a layered AC.

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs

2. P evaluates

, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs

2. P evaluates

, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs

2. P evaluates

, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs

2. P evaluates

, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

y

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check

, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check, gets
claim about second-last layer

5. V iterates

, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

GKR08: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check, gets
claim about second-last layer

5. V iterates, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

GKR08: IP for arithmetic circuit evaluation (with ZK)

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check, gets
claim about second-last layer

5. V iterates, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

To make this protocol ZK, P sends
commitments to its messages [CD98].

GKR08: IP for arithmetic circuit evaluation (with ZK)

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer’s input wires

4. V engages P in a sum-check, gets
claim about second-last layer

5. V iterates, gets claim about
inputs, which it can check

V Px

thinking...

y

thinking...

... sum-check
[LFKN90]

more sum-checks

In a ZK proof, AC inputs include w ,
so V cannot check them directly!

Idea: use a polynomial commitment [KZG10]

V ’s final check is to evaluate a polynomial m̃ that
encodes input x and witness w .

Instead of having V evaluate m̃ directly:

1. P commits to m̃ at the start of the protocol
2. P and V run the interactive proof
3. P evaluates m̃(·) at a point of V ’s choosing. . .
4. . . . and proves consistency with initial commitment.

Hyrax uses a new polynomial commitment scheme
tailored to multilinear? polynomials like m̃
?multivariate, linear in each variable

Idea: use a polynomial commitment [KZG10]

V ’s final check is to evaluate a polynomial m̃ that
encodes input x and witness w .

Instead of having V evaluate m̃ directly:

1. P commits to m̃ at the start of the protocol

2. P and V run the interactive proof
3. P evaluates m̃(·) at a point of V ’s choosing. . .
4. . . . and proves consistency with initial commitment.

Hyrax uses a new polynomial commitment scheme
tailored to multilinear? polynomials like m̃
?multivariate, linear in each variable

Idea: use a polynomial commitment [KZG10]

V ’s final check is to evaluate a polynomial m̃ that
encodes input x and witness w .

Instead of having V evaluate m̃ directly:

1. P commits to m̃ at the start of the protocol
2. P and V run the interactive proof

3. P evaluates m̃(·) at a point of V ’s choosing. . .
4. . . . and proves consistency with initial commitment.

Hyrax uses a new polynomial commitment scheme
tailored to multilinear? polynomials like m̃
?multivariate, linear in each variable

Idea: use a polynomial commitment [KZG10]

V ’s final check is to evaluate a polynomial m̃ that
encodes input x and witness w .

Instead of having V evaluate m̃ directly:

1. P commits to m̃ at the start of the protocol
2. P and V run the interactive proof
3. P evaluates m̃(·) at a point of V ’s choosing. . .

4. . . . and proves consistency with initial commitment.

Hyrax uses a new polynomial commitment scheme
tailored to multilinear? polynomials like m̃
?multivariate, linear in each variable

Idea: use a polynomial commitment [KZG10]

V ’s final check is to evaluate a polynomial m̃ that
encodes input x and witness w .

Instead of having V evaluate m̃ directly:

1. P commits to m̃ at the start of the protocol
2. P and V run the interactive proof
3. P evaluates m̃(·) at a point of V ’s choosing. . .
4. . . . and proves consistency with initial commitment.

Hyrax uses a new polynomial commitment scheme
tailored to multilinear? polynomials like m̃
?multivariate, linear in each variable

Idea: use a polynomial commitment [KZG10]

V ’s final check is to evaluate a polynomial m̃ that
encodes input x and witness w .

Instead of having V evaluate m̃ directly:

1. P commits to m̃ at the start of the protocol
2. P and V run the interactive proof
3. P evaluates m̃(·) at a point of V ’s choosing. . .
4. . . . and proves consistency with initial commitment.

Hyrax uses a new polynomial commitment scheme
tailored to multilinear? polynomials like m̃
?multivariate, linear in each variable

A polynomial commitment for m̃

m̃(r) , L · T · RT

V can compute L and R from r , and

T ,

w0 w` · · · w`2−`
w1 w`+1 · · · w`2−`+1
...

...
w`−1 w2·`−1 · · · w`2−1

A polynomial commitment for m̃

m̃(r) , L · T · RT

V can compute L and R from r , and

T ,

w0 w` · · · w`2−`
w1 w`+1 · · · w`2−`+1
...

...
w`−1 w2·`−1 · · · w`2−1

Naive: P sends commitments to each wi

7 Proof size and V time are both O(|w |)!

A polynomial commitment for m̃

m̃(r) , L · T · RT

V can compute L and R from r , and

T ,

w0 w` · · · w`2−`
w1 w`+1 · · · w`2−`+1
...

...
w`−1 w2·`−1 · · · w`2−1

Naive: P sends commitments to each wi

7 Proof size and V time are both O(|w |)!

A polynomial commitment for m̃

m̃(r) , L · T · RT

V can compute L and R from r , and

T ,

w0 w` · · · w`2−`
w1 w`+1 · · · w`2−`+1
...

...
w`−1 w2·`−1 · · · w`2−1

Better: P sends a multi-commitment to each row:
T0 = Com(w0,w`, ... ,w`2−`) [Gro09]

Pedersen commitments: vector-wise homomorphism.

A polynomial commitment for m̃

m̃(r) , L · T · RT

V can compute L and R from r , and

T ,

w0 w` · · · w`2−`
w1 w`+1 · · · w`2−`+1
...

...
w`−1 w2·`−1 · · · w`2−1

Better: P sends a multi-commitment to each row:
T0 = Com(w0,w`, ... ,w`2−`) [Gro09]

Pedersen commitments: vector-wise homomorphism.

A polynomial commitment for m̃ (cont’d)

m̃(r) , L · T · RT

T ,

w0 w` · · · w`2−`
w1 w`+1 · · · w`2−`+1

...
...

w`−1 w2·`−1 · · · w`2−1

1. V uses homomorphism to compute Com(L · T).

2. P sends a commitment to an evaluation of m̃(r)

3. P uses a dot-product argument to convince V that
Com(m̃(r)) is consistent with R and Com(L · T).

A polynomial commitment for m̃ (cont’d)

m̃(r) , L · T · RT

T ,

w0 w` · · · w`2−`
w1 w`+1 · · · w`2−`+1

...
...

w`−1 w2·`−1 · · · w`2−1

1. V uses homomorphism to compute Com(L · T).

2. P sends a commitment to an evaluation of m̃(r)

3. P uses a dot-product argument to convince V that
Com(m̃(r)) is consistent with R and Com(L · T).

A polynomial commitment for m̃ (cont’d)

m̃(r) , L · T · RT

T ,

w0 w` · · · w`2−`
w1 w`+1 · · · w`2−`+1

...
...

w`−1 w2·`−1 · · · w`2−1

1. V uses homomorphism to compute Com(L · T).

2. P sends a commitment to an evaluation of m̃(r)

3. P uses a dot-product argument to convince V that
Com(m̃(r)) is consistent with R and Com(L · T).

A polynomial commitment for m̃ (cont’d)

m̃(r) , L · T · RT

T ,

w0 w` · · · w`2−`
w1 w`+1 · · · w`2−`+1

...
...

w`−1 w2·`−1 · · · w`2−1

Dot-product argument has 2 log |R | communication
(adapted from Bulletproofs [BBBPWM18])

P sends one commitment per row: SP ∈ O
(√
|w |
)

V ’s time is O(|R |+ |L|): TV ∈ O
(√
|w |
)

Can choose SP · TV ∈ O(|w |) s.t. TV ∈ Ω
(√
|w |
)

A polynomial commitment for m̃ (cont’d)

m̃(r) , L · T · RT

T ,

w0 w` · · · w`2−`
w1 w`+1 · · · w`2−`+1

...
...

w`−1 w2·`−1 · · · w`2−1

Dot-product argument has 2 log |R | communication
(adapted from Bulletproofs [BBBPWM18])

P sends one commitment per row: SP ∈ O
(√
|w |
)

V ’s time is O(|R |+ |L|): TV ∈ O
(√
|w |
)

Can choose SP · TV ∈ O(|w |) s.t. TV ∈ Ω
(√
|w |
)

A polynomial commitment for m̃ (cont’d)

m̃(r) , L · T · RT

T ,

w0 w` · · · w`2−`
w1 w`+1 · · · w`2−`+1

...
...

w`−1 w2·`−1 · · · w`2−1

Dot-product argument has 2 log |R | communication
(adapted from Bulletproofs [BBBPWM18])

P sends one commitment per row: SP ∈ O
(√
|w |
)

V ’s time is O(|R |+ |L|): TV ∈ O
(√
|w |
)

Can choose SP · TV ∈ O(|w |) s.t. TV ∈ Ω
(√
|w |
)

A polynomial commitment for m̃ (cont’d)

m̃(r) , L · T · RT

T ,

w0 w` · · · w`2−`
w1 w`+1 · · · w`2−`+1

...
...

w`−1 w2·`−1 · · · w`2−1

Dot-product argument has 2 log |R | communication
(adapted from Bulletproofs [BBBPWM18])

P sends one commitment per row: SP ∈ O
(√
|w |
)

V ’s time is O(|R |+ |L|): TV ∈ O
(√
|w |
)

Can choose SP · TV ∈ O(|w |) s.t. TV ∈ Ω
(√
|w |
)

Details and refinements (see paper)

Use Fiat-Shamir heuristic [FS86] to make non-interactive
(in the random oracle model)

Tailored ZK transform [CD98] using multi-commitments
Ô reduces proof size and V time

Redistribution layer
Ô lets Hyrax extract parallelism from serial computations

Gir++ IP: Giraffe [WJBsTWW17] plus a tweak [CFS17]
Ô reduces proof size

Details and refinements (see paper)

Use Fiat-Shamir heuristic [FS86] to make non-interactive
(in the random oracle model)

Tailored ZK transform [CD98] using multi-commitments
Ô reduces proof size and V time

Redistribution layer
Ô lets Hyrax extract parallelism from serial computations

Gir++ IP: Giraffe [WJBsTWW17] plus a tweak [CFS17]
Ô reduces proof size

Details and refinements (see paper)

Use Fiat-Shamir heuristic [FS86] to make non-interactive
(in the random oracle model)

Tailored ZK transform [CD98] using multi-commitments
Ô reduces proof size and V time

Redistribution layer
Ô lets Hyrax extract parallelism from serial computations

Gir++ IP: Giraffe [WJBsTWW17] plus a tweak [CFS17]
Ô reduces proof size

Details and refinements (see paper)

Use Fiat-Shamir heuristic [FS86] to make non-interactive
(in the random oracle model)

Tailored ZK transform [CD98] using multi-commitments
Ô reduces proof size and V time

Redistribution layer
Ô lets Hyrax extract parallelism from serial computations

Gir++ IP: Giraffe [WJBsTWW17] plus a tweak [CFS17]
Ô reduces proof size

Roadmap

1. General-purpose ZK proof systems

2. Hyrax at a high level

3. Evaluation

Evaluation overview

Baselines:
BCCGP-sqrt [BCCGP16]—re-implemented
Bulletproofs [BBBPWM18]—re-implemented
ZKB++ [CDGORRSZ17]—ran authors’ implementation
Ligero [AHIV17]—ran authors’ implementation
libSTARK [BBHR18]—ran authors’ implementation

Hyrax-1/3—T has ` rows, `2 columns
Hyrax-naive—no refinements

Parameters: ≈90-bit security (M191 elliptic curve)

Benchmark: SHA-256 Merkle tree,
varying number of leaves

Evaluation overview

Baselines:
BCCGP-sqrt [BCCGP16]—re-implemented
Bulletproofs [BBBPWM18]—re-implemented
ZKB++ [CDGORRSZ17]—ran authors’ implementation
Ligero [AHIV17]—ran authors’ implementation
libSTARK [BBHR18]—ran authors’ implementation

Hyrax-1/3—T has ` rows, `2 columns
Hyrax-naive—no refinements

Parameters: ≈90-bit security (M191 elliptic curve)

Benchmark: SHA-256 Merkle tree,
varying number of leaves

Evaluation overview

Baselines:
BCCGP-sqrt [BCCGP16]—re-implemented
Bulletproofs [BBBPWM18]—re-implemented
ZKB++ [CDGORRSZ17]—ran authors’ implementation
Ligero [AHIV17]—ran authors’ implementation
libSTARK [BBHR18]—ran authors’ implementation

Hyrax-1/3—T has ` rows, `2 columns
Hyrax-naive—no refinements

Parameters: ≈90-bit security (M191 elliptic curve)

Benchmark: SHA-256 Merkle tree,
varying number of leaves

Proof size

2 4 6 8
log2 M , number of leaves in Merkle tree

1

10

100

103

104

105

pr
oo

f
si

ze
,

ki
B

(l
ow

er
is

b
et

te
r)

100 2× 100 3× 100 4× 100 6× 100

log2 M , number of leaves in Merkle tree

101

102

103

104

105

pr
oo

f
si

ze
,

ki
B

Hyrax-1/2 Hyrax-1/3 Hyrax-naive BCCGP-sqrt Bulletproofs ZKB++ Ligero libSTARK

P time

2 4 6 8
log2 M , number of leaves in Merkle tree

1

10

100

103

104

pr
ov

er
ti

m
e,

se
co

nd
s

(l
ow

er
is

b
et

te
r)

100 2× 100 3× 100 4× 100 6× 100

log2 M , number of leaves in Merkle tree

101

102

103

104

105

pr
oo

f
si

ze
,

ki
B

Hyrax-1/2 Hyrax-1/3 Hyrax-naive BCCGP-sqrt Bulletproofs ZKB++ Ligero libSTARK

V time

2 4 6 8
log2 M , number of leaves in Merkle tree

0.1

1

10

100

103

104
ve

ri
fie

r
ti

m
e,

se
co

nd
s

(l
ow

er
is

b
et

te
r)

100 2× 100 3× 100 4× 100 6× 100

log2 M , number of leaves in Merkle tree

101

102

103

104

105

pr
oo

f
si

ze
,

ki
B

Hyrax-1/2 Hyrax-1/3 Hyrax-naive BCCGP-sqrt Bulletproofs ZKB++ Ligero libSTARK

Recap

We design, implement, and evaluate Hyrax, a
zkSNARK for “data-parallel” AC satisfiability

3 Hyrax’s proofs are small:
to get smaller, you have to pay more computation.

3 Hyrax is fast:
to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space.
There is still plenty of room for improvement!

https://hyrax.crypto.fyi
https://github.com/hyraxZK

Recap

We design, implement, and evaluate Hyrax, a
zkSNARK for “data-parallel” AC satisfiability

3 Hyrax’s proofs are small:
to get smaller, you have to pay more computation.

3 Hyrax is fast:
to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space.
There is still plenty of room for improvement!

https://hyrax.crypto.fyi
https://github.com/hyraxZK

Recap

We design, implement, and evaluate Hyrax, a
zkSNARK for “data-parallel” AC satisfiability

3 Hyrax’s proofs are small:
to get smaller, you have to pay more computation.

3 Hyrax is fast:
to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space.
There is still plenty of room for improvement!

https://hyrax.crypto.fyi
https://github.com/hyraxZK

Recap

We design, implement, and evaluate Hyrax, a
zkSNARK for “data-parallel” AC satisfiability

3 Hyrax’s proofs are small:
to get smaller, you have to pay more computation.

3 Hyrax is fast:
to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space.
There is still plenty of room for improvement!

https://hyrax.crypto.fyi
https://github.com/hyraxZK

Recap

We design, implement, and evaluate Hyrax, a
zkSNARK for “data-parallel” AC satisfiability

3 Hyrax’s proofs are small:
to get smaller, you have to pay more computation.

3 Hyrax is fast:
to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space.
There is still plenty of room for improvement!

https://hyrax.crypto.fyi
https://github.com/hyraxZK

