Doubly-efficient zkSNARKs without trusted setup

Riad S. Wahby*, loanna Tzialla®,
abhi shelatf, Justin Thalert, and Michael Walfish®

*Stanford University
°New York University
TNortheastern University
fGeorgetown University

May 23" 2018

zkSNARK

Argument A “proof”. ..

zkSNARK

Argument A “proof”. ..

of knowledge ...that you know a secret, and. ..

zkSNARK

Argument A “proof”. ..
of knowledge ...that you know a secret, and. ..

Zero knowledge ... it doesn't reveal the secret.

zkSNARK

Argument A “proof”. ..
of knowledge ...that you know a secret, and. ..
Zero knowledge ... it doesn't reveal the secret.

Succinct It's short. ..

zkSNARK

Argument A “proof”. ..
of knowledge ...that you know a secret, and. ..
Zero knowledge ... it doesn't reveal the secret.

Succinct It's short. ..

Non-interactive ...and it can be written down. ..

zkSNARK

Argument A “proof”. ..

of knowledge ...that you know a secret, and. ..
Zero knowledge ... it doesn't reveal the secret.
Succinct It's short. ..

Non-interactive ...and it can be written down. ..

(Publicly verifiable) ...so that anyone can check it.

zkSNARKSs: Costs and desiderata

Proof size

zkSNARKSs: Costs and desiderata

Proof size

Prover (P) time

zkSNARKSs: Costs and desiderata

Proof size
Prover (P) time

Verifier (1) time

zkSNARKSs: Costs and desiderata

Proof size
Prover (P) time
Verifier (1) time

Cryptographic assumptions

zkSNARKSs: Costs and desiderata

Proof size

Prover (P) time

Verifier (1) time
Cryptographic assumptions

Trusted setup?

Our contributions

- We design and implement Hyrax, a zkSNARK
for “parallel” arithmetic circuit satisfiability:

for V's input x, 3w : C(x, w) =1 (and P knows w)

Our contributions

- We design and implement Hyrax, a zkSNARK
for “parallel” arithmetic circuit satisfiability:

for V's input x, 3w : C(x, w) =1 (and P knows w)
Proof size is sub-linear in |C| and |w|
Prover time is linear in |C|

Verifier time is sublinear in |C| and |w/|

Our contributions

- We design and implement Hyrax, a zkSNARK
for “parallel” arithmetic circuit satisfiability:

for V's input x, 3w : C(x, w) =1 (and P knows w)
Proof size is sub-linear in |C| and |w|
Prover time is linear in |C|

Verifier time is sublinear in |C| and |w/|

Good constants: concrete costs are low

Our contributions

- We design and implement Hyrax, a zkSNARK
for “parallel” arithmetic circuit satisfiability:

for V's input x, 3w : C(x, w) =1 (and P knows w)
Proof size is sub-linear in |C| and |w|

Prover time is linear in |C|

Verifier time is sublinear in |C| and |w/|

Good constants: concrete costs are low
Cryptographic assumptions: discrete log

No trusted setup

Our contributions

- We design and implement Hyrax, a zkSNARK
for “parallel” arithmetic circuit satisfiability:

for V's input x, 3w : C(x, w) =1 (and P knows w)

-> We evaluate Hyrax and five other ZK systems.
We find that:

Our contributions
- We design and implement Hyrax, a zkSNARK
for “parallel” arithmetic circuit satisfiability:
for V's input x, 3w : C(x, w) =1 (and P knows w)

-> We evaluate Hyrax and five other ZK systems.

We find that:

Hyrax's proofs are small:
to get smaller, you have to pay more computation.

Our contributions
- We design and implement Hyrax, a zkSNARK
for “parallel” arithmetic circuit satisfiability:
for V's input x, 3w : C(x, w) =1 (and P knows w)

-> We evaluate Hyrax and five other ZK systems.

We find that:

Hyrax's proofs are small:
to get smaller, you have to pay more computation.

Hyrax is fast:
to get faster, you have to accept bigger proofs.

Our contributions
- We design and implement Hyrax, a zkSNARK
for “parallel” arithmetic circuit satisfiability:
for V's input x, 3w : C(x, w) =1 (and P knows w)

-> We evaluate Hyrax and five other ZK systems.

We find that:

Hyrax's proofs are small:
to get smaller, you have to pay more computation.

Hyrax is fast:
to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space

Roadmap

1. General-purpose ZK proof systems

2. Hyrax at a high level

3. Evaluation

General-purpose ZK proof systems for NP

On input x, P convinces V that ®(x, w) =1
(for a witness w that P knows)

»| computation

|

|

|

|

®: witness !
checking [
I

|

|

|

computation
P P

computation

Y

General-purpose ZK proof systems for NP

On input x, P convinces V that ®(x, w) =1
(for a witness w that P knows)

- e = e = e e e em e e = = ===

&: witness

computation

Y

arithmetic
circuit C

[}
[}
[}
[}
[}
I'| checking
[}
[}
[}
[}
[}
[}

front-end

- e = = e e — e e— = = = = === -

ZK proof
machinery

computation

back-end

Y

P

computation

General-purpose ZK proof systems for NP

On input x, P convinces V that ®(x, w) =1
(for a witness w that P knows)

- e = = = = = e e— e— e— = - - ===

computation

| o
| i

| o

! |

1| ®: witness _ B K ;
'l checking »| arithmetic L l|13_roo
! computation circuit C || ! machinery
| : |

| I

| g :
e !

front-end back-end

Y

P

computation

General-purpose ZK proof systems for NP

On input x, P convinces V that ®(x, w) =1
(for a witness w that P knows)

- e = e = e e e em e e = = === - e = = e e — e e— = = = = === -

1!
;o
| : V
L wi ' > computation
®: witness o roof
computation circuit C machinery

P

computation

Y

® N
[
[

[}

[}

[}

|

I - -
: checking - arithmetic Lyl
|

[}

|

[}

|

[}

front. &eneralized boolean circuit over I, |y

N — X vV — +

General-purpose ZK proof systems for NP

On input x, P convinces V that ®(x, w) =1
(for a witness w that P knows)

- e = = = = = e e— e— e— = - - ===

[}

[}

[}

[}

1| ®: witness
I'| checking
]
|
[}
|
[}

Y

computation circuit C

front-end
arithmetic circuit <= witness
is satisfied is correct

arithmetic |,

ZK proof
machinery

computation

back-end

Y

P

computation

General-purpose ZK proof systems for NP

On input x, P convinces V that ®(x, w) =1
(for a witness w that P knows)

s
| ! |
! ! 1% I
| ' 1 |
1| d: witness : . I > |computation
I : _| arithmetic [1|y| ZK proof |
1| Cchecking ™ circuit ¢ [1[T| machinery !
I [computation 1 |
I 1 < P |
| ! = . |
I i computation|
| |
e et/ ;
front-end back-end
arithmetic circuit <= witness valid proof <= arithmetic circuit
is satisfied is correct is satisfied

Existing systems use a wide range of proof machinery

Linear PCPs [IK007,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPR13,. ..]
e Pinocchio [PGHR13], libsnark [BCTV14]

Short Trusted
Proofs Fast P Fast)V setup? Assumption
libsnark v X v X Knowledge of exponent

Existing systems use a wide range of proof machinery

Linear PCPs [IK007,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPR13,. ..]

e Pinocchio [PGHR13], libsnark [BCTV14]
e [BCCGP16], Bulletproofs [BBBPWM18]

Short Trusted
Proofs Fast P Fast)V setup? Assumption
libsnark v X v X Knowledge of exponent

Bulletproofs v X X v discrete log

Existing systems use a wide range of proof machinery

Linear PCPs [1K007,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPRI13,. . .|

e Pinocchio [PGHR13], libsnark [BCTV14]
e [BCCGP16], Bulletproofs [BBBPWM18]

Multiparty computation—in-the-head [1k0s07]
e ZKBoo [GMO16], ZKB++ [CDGORRSZ17]

Short Trusted

Proofs Fast P Fast)V setup? Assumption
libsnark v X v X Knowledge of exponent
Bulletproofs v X X v discrete log

ZKB++ X v X(ish) v collision-resistant hashes

Existing systems use a wide range of proof machinery

Linear PCPs [1K007,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPRI13,. . .|

e Pinocchio [PGHR13], libsnark [BCTV14]
e [BCCGP16], Bulletproofs [BBBPWM18]

Multiparty computation—in-the-head [1k0s07]

e ZKBoo [GMO16], ZKB++ [CDGORRSZ17]
e Ligero [AHIV17]

Short Trusted

Proofs Fast P Fast)V setup? Assumption
libsnark v X v X Knowledge of exponent
Bulletproofs v X X v discrete log
ZKB++ X v X(ish) v collision-resistant hashes
Ligero v/ (ish) v v (ish) v collision-resistant hashes

Existing systems use a wide range of proof machinery

Linear PCPs [1K007,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPRI13,. . .|

e Pinocchio [PGHR13], libsnark [BCTV14]
e [BCCGP16], Bulletproofs [BBBPWM18]

Multiparty computation—in-the-head [1k0s07]

e ZKBoo [GMO16], ZKB++ [CDGORRSZ17]
e Ligero [AHIV17]

Short PCPs [Kil94,Mic00,B508,BCN16,RRR16,BBC+17,BBHR17,. ..]
e IibSTARK [BBHR18]

Short Trusted
Proofs Fast P Fast)V setup? Assumption

libsnark v X v X Knowledge of exponent
Bulletproofs v X X v discrete log

ZKB++ X v X(ish) v collision-resistant hashes
Ligero v/ (ish) v v (ish) v collision-resistant hashes
libSTARK v X v v Reed-Solomon conjecture

Roadmap

1. General-purpose ZK proof systems

2. Hyrax at a high level

3. Evaluation

Hyrax: a ZK argument from Interactive Proofs (IPs)

Hyrax builds on the interactive proofs of GKR/CMT
[Bab85,GMR89,GKR08,CMT12, Thal3,WJBsTWW17,ZGKPP17,. . .]

Hyrax: a ZK argument from Interactive Proofs (IPs)

Hyrax builds on the interactive proofs of GKR/CMT
[Bab85,GMR89,GKR08,CMT12, Thal3,WJBsTWW17,ZGKPP17,. . .]

We compile Hyrax's IP to a ZK argument using the
techniques of [BGGHKMRS8| and [CD98]. ..

Hyrax: a ZK argument from Interactive Proofs (IPs)

Hyrax builds on the interactive proofs of GKR/CMT
[Bab85,GMR89,GKR08,CMT12,Thal3,WJBsTWW17,ZGKPP17,..]

We compile Hyrax's IP to a ZK argument using the
techniques of [BGGHKMRS8| and [CD98]. ..

... plus refinements that result in multiple orders of
magnitude savings in) time and proof size.

Hyrax: a ZK argument from Interactive Proofs (IPs)

Hyrax builds on the interactive proofs of GKR/CMT
[Bab85,GMR89,GKR08,CMT12,Thal3,WJBsTWW17,ZGKPP17,..]

We compile Hyrax's IP to a ZK argument using the
techniques of [BGGHKMRS8| and [CD98]. ..

... plus refinements that result in multiple orders of
magnitude savings in) time and proof size.

High-level idea: Replace each of P’s messages in
the IP with a commitment to the message; V runs
checks “under the commitments.”

Cryptographic commitments
Sender computes C <— Com(m), sends to receiver.
Later, sender can open C, convincing the receiver
that m was the committed message.

Cryptographic commitments

Sender computes C <— Com(m), sends to receiver.
Later, sender can open C, convincing the receiver
that m was the committed message.

In general, Com(m) has two important properties:
Hiding: C reveals nothing about m.

Binding: Cannot produce m" # ms.t. C = Com(m’)

Cryptographic commitments (with a linear homomorphism)

Sender computes C <— Com(m), sends to receiver.
Later, sender can open C, convincing the receiver
that m was the committed message.

In general, Com(m) has two important properties:
Hiding: C reveals nothing about m.

Binding: Cannot produce m" # ms.t. C = Com(m’)

We also require a linear homomorphism, ©:
given Gy «<— Com(my), C; < Com(my), we have
Co ® G = Com(mg + my)
CF2Go---0C =Com(k-m)

The Pedersen commitment has this property.

GKRO8: IP for arithmetic circuit evaluation (non-ZK)

©0 000

Witness checker must be
expressed as a layered AC.

GKRO8: IP for arithmetic circuit evaluation (non-ZK)

121665 0

s
59
Jok

1. V sends inputs

ippp
L

RE)

9960

5 oo

OSNOIIRO,

> ol

GKRO8: IP for arithmetic circuit evaluation (non-ZK)

L e (giggé
aawl,a@

thinking... | |4_|‘
@@é@b@%

—@:

@
of
RO

L

| 1
'll-l

clolcRolo

%_'@'e}'é

GKRO8: IP for arithmetic circuit evaluatlon non ZK)

1. V sends inputs @ @
2. P evaluates % a SJ
o 5. ?3. S 5 o

;gkmg @@b@% %
5o

—@:

&] &

'
@ HX)
EQ
©F

GKRO8: IP for arithmetic circuit evaluatlon (non-ZK)

1. V sends inputs g) db €p

2. P evaluates
valu e gaé

GKRO8: IP for arithmetic circuit evaluation (non-ZK)

111111

1. V sends inputs ©) @ @ ONS, @
2. P evaluates, returns output .
valu u utput y eReRe a é
& ©

:
®
@
:

GKRO8: IP for arithmetic circuit evaluation (non-ZK)

111111 0

1. V sends inputs ©) @ @ ONS, @

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer's input wires

thinking...

GKRO8: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer's input wires

4.V engages P in a sum-check

% X P
. y —
&
sum-check

— [l [LFKN9O]

GKRO8: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer's input wires

4.V engages P in a sum-check, gets
claim about second-last layer

P

sum-check
[LFKN9O]

© Q9

©

121665

0

}—Q);

RONEONIRE)

OB ONIE)

ONIRON

&)

& ||| et
e e
i

O

OB

-

&
%

&G & & FEEE

1©l

1Ol
©l

P

OMO]

@][\

GKRO8: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer's input wires

4.V engages P in a sum-check, gets
claim about second-last layer

5. V iterates

Y x P

sum-check
— || [LFKN9O]

more sum-checks

GKRO8: IP for arithmetic circuit evaluation (non-ZK)

1. V sends inputs

2. P evaluates, returns output y

3. V constructs polynomial relating
y to last layer's input wires

4.V engages P in a sum-check, gets
claim about second-last layer

5. V iterates

7

Y x P

sum-check
— || [LFKN9O]

more sum-checks

GKRO08: IP for arithmetic circuit evaluation (non—ZK)

1. V sends inputs @ @ @
3. V constructs polynomial relating

2. P evaluates, returns output y a é
y to last layer's input wires &3 8 Eﬁ Eﬁ

)

EOEEORE 6]

4. V engages P in a sum-check, gets (T
claim about second-last layer E# g @3 d ORORO

5. V iterates (i —

sum-check
— || [LFKN9O]

V P E%
X

more sum-checks

GKRO8: IP for arithmetic circuit evaluation (non-ZK)
1. V sends inputs —® @ @

2. P evaluates, returns output y

}—@

3. V constructs polynomial relating
y to last layer's input wires

ROERO

ONIRON

inputs, which it can check

4.V engages P in a sum-check, gets T
claim about second-last layer (5 (g & & &
5. V iterates, gets claim about ,———4‘4

&)

OERONNOENONnONaON

j
1% x P b
 ———>1) sum-check
= |l [LFKNOO] ®
=— LT
more sum-checks & ©

GKRO08: IP for arithmetic circuit evaluation (with ZK)

121665 0

1. V sends inputs @ @ @ @)
2. P evaluates, returns output y [’5 E’J E’A
3. V constructs polynomial relating

y to last layer's input wires &3 8 & g

4.V engages P in a sum-check, gets
claim about second-last layer E# H (JT?)J (DJ 0 & & ®

5. V iterates, gets claim about ‘

inputs, which it can check H b L«x e H L’X

To make this protocol ZK, P sends
|4 X P @ commitments to its messages [CD98|.

sum-check
— || [LFKN9Q]

more sum-checks

GKRO08: IP for arithmetic circuit evaluation (vvith ZK)

1. V sends inputs
. P evaluates, returns output y

.V constructs polynomial relating
y to last layer's input wires

.V engages P in a sum-check, gets
claim about second-last layer

121665 0

@@@

.V iterates, gets claim about
inputs,|which it can check
‘®

P

—

In a ZK proof, AC inputs include w,
so V cannot check them directly!

sum-check
[LFKN9O]

more sum-checks

T

®
G &

ﬂ

|dea: use a polynomial commitment [KZG10]

V's final check is to evaluate a polynomial m that
encodes input x and witness w.

|dea: use a polynomial commitment [KZG10]

V's final check is to evaluate a polynomial m that
encodes input x and witness w.

Instead of having V' evaluate m directly:
1. P commits to m at the start of the protocol

|dea: use a polynomial commitment [KZG10]

V's final check is to evaluate a polynomial m that
encodes input x and witness w.

Instead of having V' evaluate m directly:

1. P commits to m at the start of the protocol
2. P and V run the interactive proof

|dea: use a polynomial commitment [KZG10]

V's final check is to evaluate a polynomial m that
encodes input x and witness w.

Instead of having V' evaluate m directly:

1. P commits to m at the start of the protocol
2. P and V run the interactive proof

3. P evaluates m(-) at a point of V's choosing. ..

|dea: use a polynomial commitment [KZG10]

V's final check is to evaluate a polynomial m that
encodes input x and witness w.

Instead of having V' evaluate m directly:

1. P commits to m at the start of the protocol

2. P and V run the interactive proof

3. P evaluates m(-) at a point of V's choosing. ..

4. ...and proves consistency with initial commitment.

|dea: use a polynomial commitment [KZG10]

V's final check is to evaluate a polynomial m that
encodes input x and witness w.

Instead of having V' evaluate m directly:

1. P commits to m at the start of the protocol

2. P and V run the interactive proof

3. P evaluates m(-) at a point of V's choosing. ..

4. ...and proves consistency with initial commitment.

Hyrax uses a new polynomial commitment scheme
tailored to multilinear: polynomials like m

*multivariate, linear in each variable

A polynomial commitment for m

m(r)2L-T-RT

) can compute L and R from r, and

—
[I>

Wo
w1

Wy—1

Wy

Wit1

Wo.0—1

Wyp2_y
Wez_p41

Wyp2_1

A polynomial commitment for m

mry2L-T-R'

) can compute L and R from r, and

Wo Wy e Wy
T A Wy Wil o000 Wezyqa
We—1 Woy—1 -+ Wp_g

Naive: P sends commitments to each w;

A polynomial commitment for m

mry2L-T-R'

) can compute L and R from r, and

Wo Wy e Wy
T A Wy Wil o000 Wezyqa
We—1 Woy—1 -+ Wp_g

Naive: P sends commitments to each w;
X Proof size and V time are both O(|w|)!

A polynomial commitment for m

mry2L-T-R'

) can compute L and R from r, and

-(Wo Wy s Wy J-
ra W wir o we o)
_[We—1 Wop—1 -+ Wp_q]_

Better: P sends a multi-commitment to each row:
To = Com(wy, wy, ..., w_y) [Gro09]

A polynomial commitment for m

mry2L-T-R'

) can compute L and R from r, and

-(Wo Wy s Wy J-
ra W wir o we o)
_[We—1 Wop—1 -+ Wp_q]_

Better: P sends a multi-commitment to each row:
To = Com(wy, wy, ..., w_y) [Gro09]

Pedersen commitments: vector-wise homomorphism.

A polynomial commitment for m (cont'd)

m(r)2L-T-RT

[Wo Wy s Wpy J
T A (Wl Wig1 - Wé2—£+1j
_(Wé—l Wop—1 -+ Wp_q J_

1. V uses homomorphism to compute Com(L - T).

A polynomial commitment for m (cont'd)

m(r)2L-T-RT

[Wo Wy s Wpy J
T A (Wl Wig1 - W€2—£+1J
_[Wz—l Wop—1 -+ Wp_q J_

1. V uses homomorphism to compute Com(L - T).

2. P sends a commitment to an evaluation of m(r)

A polynomial commitment for m (cont'd)

m(r)2L-T-R"

[Wo Wy s Wpy J
T A (Wl Wig1 - Wé2—£+1j
_[Wz—l Woy—1 -+ Wp_q J_

1. V uses homomorphism to compute Com(L - T).
2. P sends a commitment to an evaluation of m(r)

3. P uses a dot-product argument to convince V that
Com(m(r)) is consistent with R and Com(L - T).

A polynomial commitment for m (cont'd)

mry2L-T-R'

[Wo Wy o Wy J
T A (Wl Wig1 -0 Wé2—£+1j
_(Wé—l Wop—1 -+ Wp_q J_

Dot-product argument has 2 log |R| communication
(adapted from Bulletproofs [BBBPWM18])

A polynomial commitment for m (cont'd)

mry2L-T-R'

[Wo Wy o Wy J
T A (Wl Wig1 - Wé2—£+1j
_(Wé—l Wop—1 -+ Wp_q J_

Dot-product argument has 2 log |R| communication
(adapted from Bulletproofs [BBBPWM18])

P sends one commitment per row: Sp € O<\/‘W‘>

A polynomial commitment for m (cont'd)

mry2L-T-R'

[Wo Wy o Wy]
T A (Wl Wig1 - W€2—£+1J
_[Wz—l Wop—1 -+ Wp_q J_

Dot-product argument has 2 log |R| communication
(adapted from Bulletproofs [BBBPWM18])

P sends one commitment per row: Sp € O<\/‘W‘>
V's time is O(|R| + |L|): Ty € o(\/|w\)

A polynomial commitment for m (cont'd)

mry2L-T-R'

[Wo Wy o Wy]
T A (Wl Wig1 - W€2—£+1J
_[Wz—l Wop—1 -+ Wp_q J_

Dot-product argument has 2 log |R| communication
(adapted from Bulletproofs [BBBPWM18])

P sends one commitment per row: Sp € O<\/‘W‘>
V's time is O(|R| + |L|): Ty € o(\/|w\)
Can choose Sp - Ty € O(|w|) s.t. Ty € Q(\/|W|)

Details and refinements (see paper)

Use Fiat-Shamir heuristic [FS86] to make non-interactive
(in the random oracle model)

Details and refinements (see paper)

Use Fiat-Shamir heuristic [FS86] to make non-interactive
(in the random oracle model)

Tailored ZK transform [CD98| using multi-commitments
=> reduces proof size and V time

Details and refinements (see paper)

Use Fiat-Shamir heuristic [FS86] to make non-interactive
(in the random oracle model)

Tailored ZK transform [CD98| using multi-commitments
=> reduces proof size and V time

Redistribution layer
-> lets Hyrax extract parallelism from serial computations

Details and refinements (see paper)

Use Fiat-Shamir heuristic [FS86] to make non-interactive
(in the random oracle model)

Tailored ZK transform [CD98| using multi-commitments
=> reduces proof size and V time

Redistribution layer
-> lets Hyrax extract parallelism from serial computations

Girt™ IP: Giraffe [WJBsTWW17] plus a tweak [CFS17]
=> reduces proof size

Roadmap

1. General-purpose ZK proof systems

2. Hyrax at a high level

3. Evaluation

Evaluation overview

Baselines:

< BCCGP-sqgrt [BCCGP16]—re-implemented

» Bulletproofs [BBBPWNM18|—re-implemented

m ZKB++ [CDGORRSZ17]—ran authors’ implementation
¢ Ligero [AHIV17]—ran authors' implementation

% libSTARK [BBHR18|—ran authors’ implementation

@ Hyrax-1/3—T has / rows, ¢ columns
* Hyrax-naive—no refinements

Evaluation overview

Baselines:

< BCCGP-sqgrt [BCCGP16]—re-implemented

» Bulletproofs [BBBPWNM18|—re-implemented

m ZKB++ [CDGORRSZ17]—ran authors’ implementation
¢ Ligero [AHIV17]—ran authors' implementation

% libSTARK [BBHR18|—ran authors’ implementation

@ Hyrax-1/3—T has ¢ rows, ¢? columns
* Hyrax-naive—no refinements

Parameters: ~90-bit security (M191 elliptic curve)

Evaluation overview

Baselines:

< BCCGP-sqgrt [BCCGP16]—re-implemented

» Bulletproofs [BBBPWNM18|—re-implemented

m ZKB++ [CDGORRSZ17]—ran authors’ implementation
¢ Ligero [AHIV17]—ran authors' implementation

% libSTARK [BBHR18|—ran authors’ implementation

@ Hyrax-1/3—T has ¢ rows, ¢? columns
* Hyrax-naive—no refinements

Parameters: ~90-bit security (M191 elliptic curve)

Benchmark: SHA-256 Merkle tree,
varying number of leaves

Proof size

= =
(@] o
Ea o1

100

proof size, kiB
(lower is better)
—_
<

—
o

>—p———D—P
' 6
logy M, number of leaves in Merkle tree

—0—Hyrax-1/3 ~—*—Hyrax-naive = —<—BCCGP-sqrt ~—>—Bulletproofs =~ —8-ZKB++ —0—Ligero ——IibSTARK

P time

101

prover time, seconds
(lower is better)

6
logy M, number of leaves in Merkle tree

—0—Hyrax-1/3 ~—*—Hyrax-naive = —<—BCCGP-sqrt ~—>—Bulletproofs =~ —8-ZKB++ —0—Ligero ——IibSTARK

VY time

e
(@) (@]
w e

100

[
= O

verifier time, seconds
(lower is better)

©
—_

6
logy M, number of leaves in Merkle tree

—0—Hyrax-1/3 ~—*—Hyrax-naive = —<—BCCGP-sqrt ~—>—Bulletproofs =~ —8-ZKB++ —0—Ligero ——IibSTARK

Recap

We design, implement, and evaluate Hyrax, a
zkSNARK for “data-parallel” AC satisfiability

Recap

We design, implement, and evaluate Hyrax, a
zkSNARK for “data-parallel” AC satisfiability

v Hyrax's proofs are small:
to get smaller, you have to pay more computation.

Recap

We design, implement, and evaluate Hyrax, a
zkSNARK for “data-parallel” AC satisfiability

v Hyrax's proofs are small:
to get smaller, you have to pay more computation.

v/ Hyrax is fast:
to get faster, you have to accept bigger proofs.

Recap

We design, implement, and evaluate Hyrax, a
zkSNARK for “data-parallel” AC satisfiability

v Hyrax's proofs are small:
to get smaller, you have to pay more computation.

v/ Hyrax is fast:
to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space.
There is still plenty of room for improvement!

Recap

We design, implement, and evaluate Hyrax, a
zkSNARK for “data-parallel” AC satisfiability

v Hyrax's proofs are small:
to get smaller, you have to pay more computation.

v/ Hyrax is fast:
to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space.
There is still plenty of room for improvement!

https://hyrax.crypto.fyi
https://github.com/hyraxZK

