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Argument A “proof”. ..

of knowledge ...that you know a secret, and. ..
Zero knowledge ... it doesn't reveal the secret.
Succinct It's short. ..

Non-interactive ...and it can be written down. ..

(Publicly verifiable) ...so that anyone can check it.
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Verifier (1) time
Cryptographic assumptions

Trusted setup?
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for “parallel” arithmetic circuit satisfiability:

for V's input x, 3w : C(x, w) =1 (and P knows w)
Proof size is sub-linear in |C| and |w|

Prover time is linear in |C|

Verifier time is sublinear in |C| and |w/|

Good constants: concrete costs are low
Cryptographic assumptions: discrete log

No trusted setup
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Our contributions
- We design and implement Hyrax, a zkSNARK
for “parallel” arithmetic circuit satisfiability:
for V's input x, 3w : C(x, w) =1 (and P knows w)

-> We evaluate Hyrax and five other ZK systems.

We find that:

Hyrax's proofs are small:
to get smaller, you have to pay more computation.

Hyrax is fast:
to get faster, you have to accept bigger proofs.

Hyrax is one useful point in a large tradeoff space
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General-purpose ZK proof systems for NP

On input x, P convinces V that ®(x, w) =1
(for a witness w that P knows)
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Existing systems use a wide range of proof machinery

Linear PCPs [1K007,Gro09,Gro10,BG12,Lip12,BCIOP13,GGPRI13,. . .|

e Pinocchio [PGHR13], libsnark [BCTV14]
e [BCCGP16], Bulletproofs [BBBPWM18]

Multiparty computation—in-the-head [1k0s07]

e ZKBoo [GMO16], ZKB++ [CDGORRSZ17]
e Ligero [AHIV17]

Short PCPs [Kil94,Mic00,B508,BCN16,RRR16,BBC+17,BBHR17,. .. ]
e IibSTARK [BBHR18]

Short Trusted
Proofs Fast P Fast )V setup? Assumption

libsnark v X v X Knowledge of exponent
Bulletproofs v X X v discrete log

ZKB++ X v X(ish) v collision-resistant hashes
Ligero v/ (ish) v v (ish) v collision-resistant hashes
libSTARK v X v v Reed-Solomon conjecture
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Hyrax: a ZK argument from Interactive Proofs (IPs)

Hyrax builds on the interactive proofs of GKR/CMT
[Bab85,GMR89,GKR08,CMT12,Thal3,WJBsTWW17,ZGKPP17,.. ]

We compile Hyrax's IP to a ZK argument using the
techniques of [BGGHKMRS8| and [CD98]. ..

... plus refinements that result in multiple orders of
magnitude savings in ) time and proof size.

High-level idea: Replace each of P’s messages in
the IP with a commitment to the message; V runs
checks “under the commitments.”
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Cryptographic commitments (with a linear homomorphism)

Sender computes C <— Com(m), sends to receiver.
Later, sender can open C, convincing the receiver
that m was the committed message.

In general, Com(m) has two important properties:
Hiding: C reveals nothing about m.

Binding: Cannot produce m" # ms.t. C = Com(m’)

We also require a linear homomorphism, ©:
given Gy «<— Com(my), C; < Com(my), we have
Co ® G = Com(mg + my)
CF2Go---0C =Com(k-m)

The Pedersen commitment has this property.
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1. V sends inputs
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GKRO08: IP for arithmetic circuit evaluation (with ZK)
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|dea: use a polynomial commitment [KZG10]

V's final check is to evaluate a polynomial m that
encodes input x and witness w.

Instead of having V' evaluate m directly:

1. P commits to m at the start of the protocol

2. P and V run the interactive proof

3. P evaluates m(-) at a point of V's choosing. ..

4. ...and proves consistency with initial commitment.

Hyrax uses a new polynomial commitment scheme
tailored to multilinear: polynomials like m

*multivariate, linear in each variable
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mry2L-T-R'

) can compute L and R from r, and

Wo Wy e Wy
T A Wy Wil o000 Wezyqa
We—1 Woy—1 -+ Wp_g

Naive: P sends commitments to each w;
X Proof size and V time are both O(|w|)!




A polynomial commitment for m

mry2L-T-R'

) can compute L and R from r, and

-(Wo Wy s Wy J-
ra W wir o we o)
_[We—1 Wop—1 -+ Wp_q ]_

Better: P sends a multi-commitment to each row:
To = Com(wy, wy, ..., w_y) [Gro09]



A polynomial commitment for m

mry2L-T-R'

) can compute L and R from r, and

-(Wo Wy s Wy J-
ra W wir o we o)
_[We—1 Wop—1 -+ Wp_q ]_

Better: P sends a multi-commitment to each row:
To = Com(wy, wy, ..., w_y) [Gro09]

Pedersen commitments: vector-wise homomorphism.
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A polynomial commitment for m (cont'd)

m(r)2L-T-R"

_[Wo Wy s Wpy J_
T A (Wl Wig1 - Wé2—£+1j
_[Wz—l Woy—1 -+ Wp_q J_

1. V uses homomorphism to compute Com(L - T).
2. P sends a commitment to an evaluation of m(r)

3. P uses a dot-product argument to convince V that
Com(m(r)) is consistent with R and Com(L - T).



A polynomial commitment for m (cont'd)

mry2L-T-R'

_[Wo Wy o Wy J_
T A (Wl Wig1 -0 Wé2—£+1j
_(Wé—l Wop—1 -+ Wp_q J_

Dot-product argument has 2 log |R| communication
(adapted from Bulletproofs [BBBPWM18])



A polynomial commitment for m (cont'd)

mry2L-T-R'

_[Wo Wy o Wy J_
T A (Wl Wig1 - Wé2—£+1j
_(Wé—l Wop—1 -+ Wp_q J_

Dot-product argument has 2 log |R| communication
(adapted from Bulletproofs [BBBPWM18])

P sends one commitment per row: Sp € O<\/‘W‘>



A polynomial commitment for m (cont'd)

mry2L-T-R'

_[Wo Wy o Wy ]_
T A (Wl Wig1 - W€2—£+1J
_[Wz—l Wop—1 -+ Wp_q J_

Dot-product argument has 2 log |R| communication
(adapted from Bulletproofs [BBBPWM18])

P sends one commitment per row: Sp € O<\/‘W‘>
V's time is O(|R| + |L|): Ty € o(\/|w\)



A polynomial commitment for m (cont'd)

mry2L-T-R'

_[Wo Wy o Wy ]_
T A (Wl Wig1 - W€2—£+1J
_[Wz—l Wop—1 -+ Wp_q J_

Dot-product argument has 2 log |R| communication
(adapted from Bulletproofs [BBBPWM18])

P sends one commitment per row: Sp € O<\/‘W‘>
V's time is O(|R| + |L|): Ty € o(\/|w\)
Can choose Sp - Ty € O(|w|) s.t. Ty € Q(\/|W|)
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Details and refinements (see paper)

Use Fiat-Shamir heuristic [FS86] to make non-interactive
(in the random oracle model)

Tailored ZK transform [CD98| using multi-commitments
=> reduces proof size and V time

Redistribution layer
-> lets Hyrax extract parallelism from serial computations

Girt™ IP: Giraffe [WJBsTWW17] plus a tweak [CFS17]
=> reduces proof size
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Evaluation overview

Baselines:

< BCCGP-sqgrt [BCCGP16]—re-implemented

» Bulletproofs [BBBPWNM18|—re-implemented

m ZKB++ [CDGORRSZ17]—ran authors’ implementation
¢ Ligero [AHIV17]—ran authors' implementation

% libSTARK [BBHR18|—ran authors’ implementation

@ Hyrax-1/3—T has ¢ rows, ¢? columns
* Hyrax-naive—no refinements

Parameters: ~90-bit security (M191 elliptic curve)

Benchmark: SHA-256 Merkle tree,
varying number of leaves
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https://hyrax.crypto.fyi
https://github.com/hyraxZK



