
Robust, low-cost, auditable random number
generation for embedded system security

Ben Lampert?◦, Riad S. Wahby?,
Shane Leonard?, and Philip Levis?

?
Stanford University
◦
NAUTO, Inc.

November 14th, 2016

All secure systems depend on random numbers

Embedded systems face unique challenges

We present a hardware/software system for random
number generation tailored to embedded devices:

� hardware costs ≈$1.50, 1.5 cm2 board area

� run once at boot, takes 25 ms to initialize

� energy cost equivalent to 10 ZigBee packets

All secure systems depend on random numbers

Embedded systems face unique challenges

We present a hardware/software system for random
number generation tailored to embedded devices:

� hardware costs ≈$1.50, 1.5 cm2 board area

� run once at boot, takes 25 ms to initialize

� energy cost equivalent to 10 ZigBee packets

All secure systems depend on random numbers

Embedded systems face unique challenges

We present a hardware/software system for random
number generation tailored to embedded devices:

� hardware costs ≈$1.50, 1.5 cm2 board area

� run once at boot, takes 25 ms to initialize

� energy cost equivalent to 10 ZigBee packets

http://xkcd.com/221/ CC BY-NC 2.5

http://xkcd.com/221/

http://xkcd.com/221/ CC BY-NC 2.5

http://xkcd.com/221/

A deterministic “random” number generator?

What properties would it have?

� Uniformly distributed.

Not enough.

GNU libc’s rand() output is very nearly uniform

But future outputs are easy to predict given past outputs

� . . . and no self correlation.

Still no.
π is thought to be normal: it will pass many statistical tests
What if we used digits of π?
But future outputs are easy to predict given knowledge of source

Idea: add a secret!

A deterministic “random” number generator?

What properties would it have?

� Uniformly distributed. Not enough.
GNU libc’s rand() output is very nearly uniform
But future outputs are easy to predict given past outputs

� . . . and no self correlation.

Still no.
π is thought to be normal: it will pass many statistical tests
What if we used digits of π?
But future outputs are easy to predict given knowledge of source

Idea: add a secret!

A deterministic “random” number generator?

What properties would it have?

� Uniformly distributed. Not enough.
GNU libc’s rand() output is very nearly uniform
But future outputs are easy to predict given past outputs

� . . . and no self correlation.

Still no.

π is thought to be normal: it will pass many statistical tests
What if we used digits of π?

But future outputs are easy to predict given knowledge of source

Idea: add a secret!

A deterministic “random” number generator?

What properties would it have?

� Uniformly distributed. Not enough.
GNU libc’s rand() output is very nearly uniform
But future outputs are easy to predict given past outputs

� . . . and no self correlation. Still no.
π is thought to be normal: it will pass many statistical tests
What if we used digits of π?
But future outputs are easy to predict given knowledge of source

Idea: add a secret!

A deterministic “random” number generator?

What properties would it have?

� Uniformly distributed. Not enough.
GNU libc’s rand() output is very nearly uniform
But future outputs are easy to predict given past outputs

� . . . and no self correlation. Still no.
π is thought to be normal: it will pass many statistical tests
What if we used digits of π?
But future outputs are easy to predict given knowledge of source

Idea: add a secret!

Cryptographically secure pseudorandom number generator

CSPRNG: a deterministic algorithm that generates
“good randomness” given a secret key k

Key property (informal): given past outputs, no
efficient algorithm can predict future outputs

Concrete example: using AES, encrypt the sequence
{0, 1, 2, 3, ...} under secret key k
⇒ can securely generate > 260 bytes!

Figure of merit: entropy
informally: the number of bits in k that an
adversary does not know

Cryptographically secure pseudorandom number generator

CSPRNG: a deterministic algorithm that generates
“good randomness” given a secret key k

Key property (informal): given past outputs, no
efficient algorithm can predict future outputs

Concrete example: using AES, encrypt the sequence
{0, 1, 2, 3, ...} under secret key k
⇒ can securely generate > 260 bytes!

Figure of merit: entropy
informally: the number of bits in k that an
adversary does not know

Cryptographically secure pseudorandom number generator

CSPRNG: a deterministic algorithm that generates
“good randomness” given a secret key k

Key property (informal): given past outputs, no
efficient algorithm can predict future outputs

Concrete example: using AES, encrypt the sequence
{0, 1, 2, 3, ...} under secret key k

⇒ can securely generate > 260 bytes!

Figure of merit: entropy
informally: the number of bits in k that an
adversary does not know

Cryptographically secure pseudorandom number generator

CSPRNG: a deterministic algorithm that generates
“good randomness” given a secret key k

Key property (informal): given past outputs, no
efficient algorithm can predict future outputs

Concrete example: using AES, encrypt the sequence
{0, 1, 2, 3, ...} under secret key k
⇒ can securely generate > 260 bytes!

Figure of merit: entropy
informally: the number of bits in k that an
adversary does not know

Cryptographically secure pseudorandom number generator

CSPRNG: a deterministic algorithm that generates
“good randomness” given a secret key k

Key property (informal): given past outputs, no
efficient algorithm can predict future outputs

Concrete example: using AES, encrypt the sequence
{0, 1, 2, 3, ...} under secret key k
⇒ can securely generate > 260 bytes!

Figure of merit: entropy
informally: the number of bits in k that an
adversary does not know

Why not existing solutions?

� Gather entropy from many sources
e.g., hard disk, keyboard, network timing

7 Embedded systems may not have these sources
7 Continuous gathering costs energy

� RNG built into processor or SoC
e.g., RDRAND on Intel processors

7 Embedded processors may not have RNG
7 Integrated RNG is opaque, not auditable
� Becker et al. [CHES ’13] showed that integrated

hardware RNGs can be stealthily backdoored

Why not existing solutions?

� Gather entropy from many sources
e.g., hard disk, keyboard, network timing

7 Embedded systems may not have these sources
7 Continuous gathering costs energy

� RNG built into processor or SoC
e.g., RDRAND on Intel processors

7 Embedded processors may not have RNG
7 Integrated RNG is opaque, not auditable
� Becker et al. [CHES ’13] showed that integrated

hardware RNGs can be stealthily backdoored

Why not existing solutions?

� Gather entropy from many sources
e.g., hard disk, keyboard, network timing

7 Embedded systems may not have these sources
7 Continuous gathering costs energy

� RNG built into processor or SoC
e.g., RDRAND on Intel processors

7 Embedded processors may not have RNG
7 Integrated RNG is opaque, not auditable
� Becker et al. [CHES ’13] showed that integrated

hardware RNGs can be stealthily backdoored

Why not existing solutions?

� Gather entropy from many sources
e.g., hard disk, keyboard, network timing

7 Embedded systems may not have these sources
7 Continuous gathering costs energy

� RNG built into processor or SoC
e.g., RDRAND on Intel processors

7 Embedded processors may not have RNG

7 Integrated RNG is opaque, not auditable
� Becker et al. [CHES ’13] showed that integrated

hardware RNGs can be stealthily backdoored

Why not existing solutions?

� Gather entropy from many sources
e.g., hard disk, keyboard, network timing

7 Embedded systems may not have these sources
7 Continuous gathering costs energy

� RNG built into processor or SoC
e.g., RDRAND on Intel processors

7 Embedded processors may not have RNG
7 Integrated RNG is opaque, not auditable
� Becker et al. [CHES ’13] showed that integrated

hardware RNGs can be stealthily backdoored

Wish list

� Inexpensive

� Small

� Low power

� Insensitive to environmental factors
(e.g., temperature, RF interference)

� Easy to detect failure: simple and auditable

� Generates a CSPRNG key quickly

Generating unpredictable bits: two easy pieces

noise
source

conversion
circuit

unpredictable
bits

Noise source: a device exhibiting
an unpredictable physical phenomenon

Conversion circuit: detects state of device,
produces corresponding bits

Generating unpredictable bits: two easy pieces

noise
source

conversion
circuit

unpredictable
bits

Example noise sources:

7

Radioactive decay

7

Beam splitting

7

Photoelectric effect

3

Circuit noise

7

thermal noise (all electronic devices)

7

shot noise, flicker noise (diodes and transistors)

3

Zener noise, avalanche noise (diodes)

Generating unpredictable bits: two easy pieces

noise
source

conversion
circuit

unpredictable
bits

Example noise sources:

7 Radioactive decay

7 Beam splitting

7 Photoelectric effect

3

Circuit noise

7

thermal noise (all electronic devices)

7

shot noise, flicker noise (diodes and transistors)

3

Zener noise, avalanche noise (diodes)

Generating unpredictable bits: two easy pieces

noise
source

conversion
circuit

unpredictable
bits

Example noise sources:

7 Radioactive decay

7 Beam splitting

7 Photoelectric effect

3

Circuit noise

7 thermal noise (all electronic devices)

7

shot noise, flicker noise (diodes and transistors)

3

Zener noise, avalanche noise (diodes)

Generating unpredictable bits: two easy pieces

noise
source

conversion
circuit

unpredictable
bits

Example noise sources:

7 Radioactive decay

7 Beam splitting

7 Photoelectric effect

3

Circuit noise

7 thermal noise (all electronic devices)
7 shot noise, flicker noise (diodes and transistors)

3

Zener noise, avalanche noise (diodes)

Generating unpredictable bits: two easy pieces

noise
source

conversion
circuit

unpredictable
bits

Example noise sources:

7 Radioactive decay

7 Beam splitting

7 Photoelectric effect

3 Circuit noise

7 thermal noise (all electronic devices)
7 shot noise, flicker noise (diodes and transistors)
3 Zener noise, avalanche noise (diodes)

Generating unpredictable bits: two easy pieces

noise
source

conversion
circuit

unpredictable
bits

Example noise sources:

7 Radioactive decay

7 Beam splitting

7 Photoelectric effect

3 Circuit noise

7 thermal noise (all electronic devices)
7 shot noise, flicker noise (diodes and transistors)
3 Zener noise, avalanche noise (diodes)

Diodes, reverse breakdown, and avalanche

Voltage applied in forward direction:
current can flow

+ –

i > 0

Low voltage applied in reverse
direction: current cannot flow

– +

i = 0

High voltage applied in reverse
direction: breakdown, current flow

– +

i > 0

Avalanche current:
electron collisions cause an “avalanche” of charge carriers

Diodes, reverse breakdown, and avalanche

Voltage applied in forward direction:
current can flow

+ –

i > 0

Low voltage applied in reverse
direction: current cannot flow

– +

i = 0

High voltage applied in reverse
direction: breakdown, current flow

– +

i > 0

Avalanche current:
electron collisions cause an “avalanche” of charge carriers

Diodes, reverse breakdown, and avalanche

Voltage applied in forward direction:
current can flow

+ –

i > 0

Low voltage applied in reverse
direction: current cannot flow

– +

i = 0

High voltage applied in reverse
direction: breakdown, current flow

– +

i > 0

Avalanche current:
electron collisions cause an “avalanche” of charge carriers

Avalanche current

R1
10 kΩ

Vnoise

12.16 V

0 0.5 1 1.5 2 2.5 3
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

V
no

is
e, v

ol
ts

time, µs

−0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

1

2

3

4

5

6

7

8

9

V
noise

 deviation from 160 mV, volts

fr
eq

ue
nc

y,
 p

er
ce

nt
 o

f s
am

pl
es

Overcoming manufacturing variations

−

+
Vref

R1
10 kΩ

Vnoise

−

+ output bits

Converting Vnoise to bits

−

+
Vref

R1
10 kΩ

Vnoise

−

+ output bits

Issue: outside disturbances

−

+
Vref

R1
10 kΩ

idist
Vnoise

−

+ output bits

Overcoming disturbances using a differential circuit

Vref
−

+

idist

R1
10 kΩ

D1
Vnoise,1

−

+

idist

R2
10 kΩ

D2

Vnoise,2

−

+ output bits

Overcoming disturbances using a differential circuit

Vref
−

+

idist
R1

10 kΩ

D1
Vnoise,1

−

+

idist
R2

10 kΩ

D2

Vnoise,2

−

+ output bits

Issue: how do we generate 12 V?

M1

L1
10 µH

3.3 V

Cout

10 µF

D1 Vboost > 3.3 V

Controller
en

Issue: the boost converter causes large disturbances

Solution: interleave boost and output sampling

Issue: how do we generate 12 V?

M1

L1
10 µH

3.3 V

Cout

10 µF

D1 Vboost > 3.3 V

Controller
en

Issue: the boost converter causes large disturbances

Solution: interleave boost and output sampling

Issue: how do we generate 12 V?

M1

L1
10 µH

3.3 V

Cout

10 µF

D1 Vboost > 3.3 V

Controller
en

Issue: the boost converter causes large disturbances

Solution: interleave boost and output sampling

Interleaved boost operation

Vboost

iboost

comparator output

Putting it all together

� At boot:

1. run circuit to gather 1024 bits, braw
2. compute k = SHA256 (braw)
3. initialize global counter c = 0

� To generate a random number:

1. increment counter c
2. use AES to encrypt c under key k
3. return resulting ciphertext

Putting it all together

� At boot:

1. run circuit to gather 1024 bits, braw
2. compute k = SHA256 (braw)
3. initialize global counter c = 0

� To generate a random number:

1. increment counter c
2. use AES to encrypt c under key k
3. return resulting ciphertext

Testing and monitoring

In the paper, we define methods for:

Acceptance testing:
after assembly and before deployment, each
device should be checked for proper operation

Online auditing:
for systems requiring high assurance, further
online testing in the field

Evaluation questions

� How quickly should the system sample
the bit generator’s output?

� What are the statistical properties of the raw
output versus time and temperature?

� What is the cost, in energy and time, of
generating a CSPRNG key?

Built systems

Cost ≈ $1.50

Determining the sample rate

Sampling Frequency (Hz)
103 104 105 106 107 108

S
er

ia
l C

or
re

la
tio

n

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Serial Correlation vs Sampling Frequency

Statistical properties versus temperature

−20 −10 0 10 20 30 40 50 60
0.985

0.99

0.995

1

Temperature (°C)

E
nt

ro
py

(c
lo

se
r

to
 1

 is
 b

et
te

r)

Entropy vs. Temperature

−20 −10 0 10 20 30 40 50 60
−0.02

−0.01

0

0.01

0.02

Temperature (°C)

S
er

ia
l C

or
re

la
tio

n
(c

lo
se

r
to

 0
 is

 b
et

te
r)

Serial Correlation vs. Temperature

Statistical properties versus time

0 1 2 3 4 5 6 7 8 9 10
0.985

0.99

0.995

1
E

nt
ro

py
(c

lo
se

r
to

 1
 is

 b
et

te
r)

Long Term Entropy

days

0 1 2 3 4 5 6 7 8 9 10
−0.02

−0.01

0

0.01

0.02

S
er

ia
l C

or
re

la
tio

n
(c

lo
se

r
to

 0
 is

 b
et

te
r)

Long Term Serial Correlation

days

Time and energy costs to generate CSPRNG key

Time to gather 1024 bits:
≈13 ms running dc/dc converter
≈12 ms sampling output of bit generator

Energy to gather 1024 bits:
≈3 µJ per bit
≈ 10× more energy per bit than a ZigBee radio,
amortized over all CSPRNG outputs

Conclusions

� You should worry about your random numbers!

� A CSPRNG can generate secure, effectively
limitless output given a hard-to-guess key. . .

� . . . but in embedded systems, generating
a CSPRNG key is challenging

� We have presented a design tailored to embedded
systems for secure, inexpensive pseudorandomness

� Future work: smaller, cheaper, faster

https://github.com/helena-project/imix

https://github.com/helena-project/imix

R1
10 kΩ

D1

Vhigh

Vref

Cf

0.47 µF

Op-amp 1

−

+

Vhigh

R2
10 kΩ

D2
Vnoise,1

Op-amp 2

−

+

Vhigh

R3
10 kΩ

D3

Vnoise,2

Comparator

−

+
3.3 V

Vout

Boost converter

Vin
Vout

3.3 V
Vhigh

en enable

