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Embedded systems face unique challenges

We present a hardware/software system for random
number generation tailored to embedded devices:

o hardware costs ~$1.50, 1.5 cm? board area

e run once at boot, takes 25 ms to initialize

e energy cost equivalent to 10 ZigBee packets
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int getRondomNumber ()

return 4. // chosen by fair dice roll.
// quaranteed to be random.

http://xkcd.com/221/ CC BY-NC 2.5
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A deterministic “random” number generator?

What properties would it have?

o Uniformly distributed. Not enough.

GNU libc's rand() output is very nearly uniform
But future outputs are easy to predict given past outputs

e ...and no self correlation. Still no.

7 is thought to be normal: it will pass many statistical tests
What if we used digits of 77
But future outputs are easy to predict given knowledge of source

Idea: add a secret!
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Cryptographically secure pseudorandom number generator

CSPRNG: a deterministic algorithm that generates
“good randomness”’ given a secret key k

Key property (informal): given past outputs, no
efficient algorithm can predict future outputs

Concrete example: using AES, encrypt the sequence
{0,1,2,3, ...} under secret key k
= can securely generate > 2°0 bytes!

Figure of merit: entropy
informally: the number of bits in k that an
adversary does not know
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Why not existing solutions?

« Gather entropy from many sources
e.g., hard disk, keyboard, network timing

X Embedded systems may not have these sources
X Continuous gathering costs energy

« RNG built into processor or SoC
e.g., RDRAND on Intel processors

X Embedded processors may not have RNG

X Integrated RNG is opaque, not auditable

o Becker et al. [CHES '13] showed that integrated
hardware RNGs can be stealthily backdoored



Wish list

o Inexpensive
o Small
o Low power

« Insensitive to environmental factors
(e.g., temperature, RF interference)

« Easy to detect failure: simple and auditable

o Generates a CSPRNG key quickly
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Example noise sources:

X Radioactive decay
X Beam splitting

X Photoelectric effect

v  Circuit noise

X thermal noise (all electronic devices)
X shot noise, flicker noise (diodes and transistors)
v Zener noise, (avalanche noise)(diodes)
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Diodes, reverse breakdown, and avalanche

+ _
Voltage applied in forward direction: >
current can flow
>0
— +
Low voltage applied in reverse >
direction: current cannot flow Bl
i=0

High voltage applied in reverse
direction: breakdown, current flow >

Avalanche current:
electron collisions cause an “avalanche” of charge carriers



Avalanche current
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Overcoming manufacturing variations
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Converting V ise to bits
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Issue: outside disturbances
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Overcoming disturbances using a differential circuit
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Issue: how do we generate 12 V?

3.3V
L1
10 :uH D1 Vboost >33 \
en “"IController M1 Cout ——
10 uF —

Issue: the boost converter causes large disturbances
Solution: interleave boost and output sampling



Interleaved boost operation
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Putting it all together

« At boot:

1. run circuit to gather 1024 bits, by,
2. compute k = SHA256 (byaw)
3. initialize global counter ¢ =0

o To generate a random number:
1. increment counter ¢
2. use AES to encrypt ¢ under key k
3. return resulting ciphertext



Testing and monitoring

In the paper, we define methods for:

Acceptance testing:
after assembly and before deployment, each
device should be checked for proper operation

Online auditing:
for systems requiring high assurance, further
online testing in the field



Evaluation questions

« How quickly should the system sample
the bit generator's output?

« What are the statistical properties of the raw
output versus time and temperature?

o What is the cost, in energy and time, of
generating a CSPRNG key?



Built systems

Cost ~ $1.50
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Determining the sample rate

06 Serial Correlation vs Sampling Frequency
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Statistical properties versus temperature

Entropy
(closer to 1 is better)

Serial Correlation
(closer to 0 is better)
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Statistical properties versus time

Entropy
(closer to 1 is better)

Serial Correlation
(closer to O is better)
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Time and energy costs to generate CSPRNG key

Time to gather 1024 bits:
~13 ms running dc/dc converter
~12 ms sampling output of bit generator

Energy to gather 1024 bits:
~3 ud per bit
~ 10x more energy per bit than a ZigBee radio,
amortized over all CSPRNG outputs



Conclusions

« You should worry about your random numbers!

o A CSPRNG can generate secure, effectively
limitless output given a hard-to-guess key. ..

o ...but in embedded systems, generating
a CSPRNG key is challenging

« We have presented a design tailored to embedded
systems for secure, inexpensive pseudorandomness

« Future work: smaller, cheaper, faster

https://github.com/helena-project/imix
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