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All secure systems depend on random numbers

Embedded systems face unique challenges

We present a hardware/software system for random
number generation tailored to embedded devices:

� hardware costs ≈$1.50, 1.5 cm2 board area

� run once at boot, takes 25 ms to initialize

� energy cost equivalent to 10 ZigBee packets
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A deterministic “random” number generator?

What properties would it have?

� Uniformly distributed.

Not enough.

GNU libc’s rand() output is very nearly uniform

But future outputs are easy to predict given past outputs

� . . . and no self correlation.

Still no.
π is thought to be normal: it will pass many statistical tests
What if we used digits of π?
But future outputs are easy to predict given knowledge of source

Idea: add a secret!
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Cryptographically secure pseudorandom number generator

CSPRNG: a deterministic algorithm that generates
“good randomness” given a secret key k

Key property (informal): given past outputs, no
efficient algorithm can predict future outputs

Concrete example: using AES, encrypt the sequence
{0, 1, 2, 3, ...} under secret key k
⇒ can securely generate > 260 bytes!

Figure of merit: entropy
informally: the number of bits in k that an
adversary does not know
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Why not existing solutions?

� Gather entropy from many sources
e.g., hard disk, keyboard, network timing

7 Embedded systems may not have these sources
7 Continuous gathering costs energy

� RNG built into processor or SoC
e.g., RDRAND on Intel processors

7 Embedded processors may not have RNG
7 Integrated RNG is opaque, not auditable
� Becker et al. [CHES ’13] showed that integrated

hardware RNGs can be stealthily backdoored
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Wish list

� Inexpensive

� Small

� Low power

� Insensitive to environmental factors
(e.g., temperature, RF interference)

� Easy to detect failure: simple and auditable

� Generates a CSPRNG key quickly



Generating unpredictable bits: two easy pieces

noise
source

conversion
circuit

unpredictable
bits

Noise source: a device exhibiting
an unpredictable physical phenomenon

Conversion circuit: detects state of device,
produces corresponding bits
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Diodes, reverse breakdown, and avalanche

Voltage applied in forward direction:
current can flow

+ –

i > 0

Low voltage applied in reverse
direction: current cannot flow

– +

i = 0

High voltage applied in reverse
direction: breakdown, current flow

– +

i > 0

Avalanche current:
electron collisions cause an “avalanche” of charge carriers
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Avalanche current
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Overcoming manufacturing variations
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Overcoming disturbances using a differential circuit
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Issue: how do we generate 12 V?

M1

L1
10 µH

3.3 V

Cout

10 µF

D1 Vboost > 3.3 V

Controller
en

Issue: the boost converter causes large disturbances

Solution: interleave boost and output sampling
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Interleaved boost operation

Vboost

iboost

comparator output



Putting it all together

� At boot:

1. run circuit to gather 1024 bits, braw
2. compute k = SHA256 (braw)
3. initialize global counter c = 0

� To generate a random number:

1. increment counter c
2. use AES to encrypt c under key k
3. return resulting ciphertext
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Testing and monitoring

In the paper, we define methods for:

Acceptance testing:
after assembly and before deployment, each
device should be checked for proper operation

Online auditing:
for systems requiring high assurance, further
online testing in the field



Evaluation questions

� How quickly should the system sample
the bit generator’s output?

� What are the statistical properties of the raw
output versus time and temperature?

� What is the cost, in energy and time, of
generating a CSPRNG key?



Built systems

Cost ≈ $1.50



Determining the sample rate
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Statistical properties versus temperature
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Statistical properties versus time
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Time and energy costs to generate CSPRNG key

Time to gather 1024 bits:
≈13 ms running dc/dc converter
≈12 ms sampling output of bit generator

Energy to gather 1024 bits:
≈3 µJ per bit
≈ 10× more energy per bit than a ZigBee radio,
amortized over all CSPRNG outputs



Conclusions

� You should worry about your random numbers!

� A CSPRNG can generate secure, effectively
limitless output given a hard-to-guess key. . .

� . . . but in embedded systems, generating
a CSPRNG key is challenging

� We have presented a design tailored to embedded
systems for secure, inexpensive pseudorandomness

� Future work: smaller, cheaper, faster

https://github.com/helena-project/imix

https://github.com/helena-project/imix
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