Robust, low-cost, auditable random number
generation for embedded system security

Ben Lampert™®, Riad S. Wahby*,
Shane Leonard™, and Philip Levis*

*
Stanford University
°NAUTO, Inc.

November 14th 2016

All secure systems depend on random numbers

DO YOU KNOW X
WHERE YOUR
RANDOM NUMBERS

COME FROM?
*

All secure systems depend on random numbers

Embedded systems face unique challenges

All secure systems depend on random numbers

Embedded systems face unique challenges

We present a hardware/software system for random
number generation tailored to embedded devices:

o hardware costs ~$1.50, 1.5 cm? board area

e run once at boot, takes 25 ms to initialize

e energy cost equivalent to 10 ZigBee packets

Slashdot stores > Al Popular Polls /. Deals Submit

Build Entertainment Technok

Debian Bug Leaves Private SSL/SSH Keys Guessable

A Posted by timothy on Tuesday May 13, 2008 @11:01AM from the security-is-a-process dept.

http://xkcd.com/221/

Slashdot stores > Al Popular Polls /. Deals Submit

s Build Entertainment Tech e YRO

Debian Bug Leaves Private SSL/SSH Keys Guessable

A Posted by timothy on Tuesday May 13, 2008 @11:01AM from the security-is-a-process dept.

int getRondomNumber ()

return 4. // chosen by fair dice roll.
// quaranteed to be random.

http://xkcd.com/221/ CC BY-NC 2.5

http://xkcd.com/221/

A deterministic “random” number generator?

What properties would it have?

o Uniformly distributed.

GNU libc's rand() output is very nearly uniform

A deterministic “random” number generator?

What properties would it have?

o Uniformly distributed. Not enough.

GNU libc's rand() output is very nearly uniform
But future outputs are easy to predict given past outputs

A deterministic “random” number generator?

What properties would it have?

o Uniformly distributed. Not enough.

GNU libc's rand() output is very nearly uniform
But future outputs are easy to predict given past outputs

e ...and no self correlation.

7 is thought to be normal: it will pass many statistical tests
What if we used digits of 77

A deterministic “random” number generator?

What properties would it have?

o Uniformly distributed. Not enough.

GNU libc's rand() output is very nearly uniform
But future outputs are easy to predict given past outputs

o ...and no self correlation. Still no.
7 is thought to be normal: it will pass many statistical tests
What if we used digits of 77
But future outputs are easy to predict given knowledge of source

A deterministic “random” number generator?

What properties would it have?

o Uniformly distributed. Not enough.

GNU libc's rand() output is very nearly uniform
But future outputs are easy to predict given past outputs

e ...and no self correlation. Still no.

7 is thought to be normal: it will pass many statistical tests
What if we used digits of 77
But future outputs are easy to predict given knowledge of source

Idea: add a secret!

Cryptographically secure pseudorandom number generator

CSPRNG: a deterministic algorithm that generates
“good randomness”’ given a secret key k

Cryptographically secure pseudorandom number generator

CSPRNG: a deterministic algorithm that generates
“good randomness”’ given a secret key k

Key property (informal): given past outputs, no
efficient algorithm can predict future outputs

Cryptographically secure pseudorandom number generator

CSPRNG: a deterministic algorithm that generates
“good randomness”’ given a secret key k

Key property (informal): given past outputs, no
efficient algorithm can predict future outputs

Concrete example: using AES, encrypt the sequence
{0,1,2,3, ...} under secret key k

Cryptographically secure pseudorandom number generator

CSPRNG: a deterministic algorithm that generates
“good randomness”’ given a secret key k

Key property (informal): given past outputs, no
efficient algorithm can predict future outputs

Concrete example: using AES, encrypt the sequence
{0,1,2,3, ...} under secret key k
= can securely generate > 2°0 bytes!

Cryptographically secure pseudorandom number generator

CSPRNG: a deterministic algorithm that generates
“good randomness”’ given a secret key k

Key property (informal): given past outputs, no
efficient algorithm can predict future outputs

Concrete example: using AES, encrypt the sequence
{0,1,2,3, ...} under secret key k
= can securely generate > 2°0 bytes!

Figure of merit: entropy
informally: the number of bits in k that an
adversary does not know

Why not existing solutions?

« Gather entropy from many sources
e.g., hard disk, keyboard, network timing

Why not existing solutions?

« Gather entropy from many sources
e.g., hard disk, keyboard, network timing

X Embedded systems may not have these sources
X Continuous gathering costs energy

Why not existing solutions?

« Gather entropy from many sources
e.g., hard disk, keyboard, network timing

X Embedded systems may not have these sources
X Continuous gathering costs energy

« RNG built into processor or SoC
e.g., RDRAND on Intel processors

Why not existing solutions?

« Gather entropy from many sources
e.g., hard disk, keyboard, network timing

X Embedded systems may not have these sources
X Continuous gathering costs energy

« RNG built into processor or SoC
e.g., RDRAND on Intel processors

X Embedded processors may not have RNG

Why not existing solutions?

« Gather entropy from many sources
e.g., hard disk, keyboard, network timing

X Embedded systems may not have these sources
X Continuous gathering costs energy

« RNG built into processor or SoC
e.g., RDRAND on Intel processors

X Embedded processors may not have RNG

X Integrated RNG is opaque, not auditable

o Becker et al. [CHES '13] showed that integrated
hardware RNGs can be stealthily backdoored

Wish list

o Inexpensive
o Small
o Low power

« Insensitive to environmental factors
(e.g., temperature, RF interference)

« Easy to detect failure: simple and auditable

o Generates a CSPRNG key quickly

Generating unpredictable bits: two easy pieces

noise
source

Y

Noise source: a device exhibiting

conversion
circuit

unpredictable
bits

I

an unpredictable physical phenomenon

Conversion circuit: detects state of device,
produces corresponding bits

Generating unpredictable bits: two easy pieces

noise
source

Y

conversion
circuit

unpredictable
bits

I

Example noise sources:

Radioactive decay

Beam splitting

Photoelectric effect

Circuit noise

thermal noise (all electronic devices)
shot noise, flicker noise (diodes and transistors)
Zener noise, avalanche noise (diodes)

Generating unpredictable bits: two easy pieces

noise
source

Y

conversion
circuit

unpredictable
bits

I

Example noise sources:

X Radioactive decay
X Beam splitting

X Photoelectric effect

Circuit noise

thermal noise (all electronic devices)
shot noise, flicker noise (diodes and transistors)
Zener noise, avalanche noise (diodes)

Generating unpredictable bits: two easy pieces

noise
source

Y

conversion
circuit

unpredictable
bits

I

Example noise sources:

X Radioactive decay
X Beam splitting

X Photoelectric effect

Circuit noise

X thermal noise (all electronic devices)
shot noise, flicker noise (diodes and transistors)
Zener noise, avalanche noise (diodes)

Generating unpredictable bits: two easy pieces

noise
source

Y

conversion
circuit

unpredictable
bits

I

Example noise sources:

X Radioactive decay
X Beam splitting

X Photoelectric effect

Circuit noise

X thermal noise (all electronic devices)
X shot noise, flicker noise (diodes and transistors)
Zener noise, avalanche noise (diodes)

Generating unpredictable bits: two easy pieces

noise
source

Y

conversion
circuit

unpredictable
bits

I

Example noise sources:

X Radioactive decay
X Beam splitting

X Photoelectric effect

v Circuit noise

X thermal noise (all electronic devices)
X shot noise, flicker noise (diodes and transistors)
v’ Zener noise, avalanche noise (diodes)

Generating unpredictable bits: two easy pieces

noise
source

Y

conversion
circuit

unpredictable
bits

I

Example noise sources:

X Radioactive decay
X Beam splitting

X Photoelectric effect

v Circuit noise

X thermal noise (all electronic devices)
X shot noise, flicker noise (diodes and transistors)
v Zener noise, (avalanche noise)(diodes)

Diodes, reverse breakdown, and avalanche

+ _
Voltage applied in forward direction: >
current can flow
>0
— +
Low voltage applied in reverse >
direction: current cannot flow Bl

Diodes, reverse breakdown, and avalanche

+ _
Voltage applied in forward direction: >
current can flow
>0
— +
Low voltage applied in reverse >
direction: current cannot flow Bl
i=0

High voltage applied in reverse
direction: breakdown, current flow >

Diodes, reverse breakdown, and avalanche

+ _
Voltage applied in forward direction: >
current can flow
>0
— +
Low voltage applied in reverse >
direction: current cannot flow Bl
i=0

High voltage applied in reverse
direction: breakdown, current flow >

Avalanche current:
electron collisions cause an “avalanche” of charge carriers

Avalanche current

10kQ2

, volts

noise

\Y

.24
0.22f
0.2
0.18
0.161
0.14f

0.12f

0.080

frequency, percent of samples
151

-0.12 -0.1

-0.08 -0.06 -0.04 -0.02 0 0.02

Vv

noise

deviation from 160 mV, volts

0.04

0.06

Overcoming manufacturing variations

Vref

X

R1 Vnoise
10 kfz%

Converting V ise to bits

Vref

+ output bits

R1 Vnoise
10 k2

Issue: outside disturbances

Vref

o—eo— +

+ output bits

A
Vnoise
aist é’? 10 kQ i

Overcoming disturbances using a differential circuit

Vref

+

D1

Vnoise,l
R1
10kQ2
+
D2
R2 Vnoise,2
10kQ2

output bits

Overcoming disturbances using a differential circuit

+
Vref
D1
Vnoise,l
. R1
st 10kQ
- - output bits
+
D2
R2 Vnoise,2

Idist (" 10kQ

Issue: how do we generate 12 V?

33V

L1

10 pH D1

Vboost >33V
en o—

M 1 Cout —

10 uF T

Controller

Issue: how do we generate 12 V?

3.3V
L1
10 :uH D1 Vboost >33 \
en “"IController M1 Cout ——
10 uF —

Issue:

the boost converter causes large disturbances

Issue: how do we generate 12 V?

3.3V
L1
10 :uH D1 Vboost >33 \
en “"IController M1 Cout ——
10 uF —

Issue: the boost converter causes large disturbances
Solution: interleave boost and output sampling

Interleaved boost operation

MS0-% 30548, MY53480236: Fri Apr 08 07.02.34 2016

1oa0es 200w 3 500w 4 16,902 50002/ Stop £ 86.32
V < Agilent
= bOOSt\ o i Acquisition
[High Res
/ i N 10 0MSads
Fal
—]
. i Channels
| OC 10.0:1
boost——- oC 10.0:1
DL 10.0:1
DL 1.00:1
: Cursors
3|1
i AL
+11.800000000ms
/A
= +84.746Hz
o S~ | o
comparator OUtpUt __ -5.56Y
' ! 1 |

L
Cursors Menu

Maode +) Source Cursors Units *1:00s ¥1: 184375V
Ianual e x2 ~- #2: 11.800000000ms | ¥2: 12.8750V

Putting it all together

« At boot:

1. run circuit to gather 1024 bits, by,
2. compute k = SHA256 (byaw)
3. initialize global counter ¢ =0

Putting it all together

« At boot:

1. run circuit to gather 1024 bits, by,
2. compute k = SHA256 (byaw)
3. initialize global counter ¢ =0

o To generate a random number:
1. increment counter ¢
2. use AES to encrypt ¢ under key k
3. return resulting ciphertext

Testing and monitoring

In the paper, we define methods for:

Acceptance testing:
after assembly and before deployment, each
device should be checked for proper operation

Online auditing:
for systems requiring high assurance, further
online testing in the field

Evaluation questions

« How quickly should the system sample
the bit generator's output?

« What are the statistical properties of the raw
output versus time and temperature?

o What is the cost, in energy and time, of
generating a CSPRNG key?

Built systems

Cost ~ $1.50

\\i SER

75 XY

O scL1
10 O EXTINTL
CSeQ O USER.LED
niscQ O USER_BTN
'O O NRF_GPID

70 O 6No
F1eQ O FT1
ofF120 O F13
34
RF237 ,
TRNG

ncy

True RNG
Ben Lamg
June 2

33

IMIX vi June 2016
Shane Leonard

Determining the sample rate

06 Serial Correlation vs Sampling Frequency

05}

0.4r

0.3F

0.2

Serial Correlation

Sampling Frequency (Hz)

Statistical properties versus temperature

Entropy
(closer to 1 is better)

Serial Correlation
(closer to 0 is better)

Entropy vs. Temperature

1 ‘
oooooocqq? °o°°c9‘§
0.995} ,° ocoogbafp® .]
. R $°° °8
0.99- o]
09857 L L L L L ° L L L L i
-20 -10 0 10 20 30 40 50 60
Temperature (QC)
0.02 Serial Correlation vs. Temperature
o
0.01F o 2
00 o ® o e o o %
¥ " o8 o ° 0oo%: o o ° g
or °ogp 0,° o o © 7
g A o o ° o, o o‘g" ° Qo o ° 4
-0.01f ° ¢ ° o
_0.02 Il L L L L L L L L
-20 -10 0 10 20 30 40 50 60

Temperature (OC)

Statistical properties versus time

Entropy
(closer to 1 is better)

Serial Correlation
(closer to O is better)

0.995

0.99

0.985
0

0.02

0.01

—-0.01

—-0.02
0

Long Term Entropy

10
days

Long Term Serial Correlation

10

Time and energy costs to generate CSPRNG key

Time to gather 1024 bits:
~13 ms running dc/dc converter
~12 ms sampling output of bit generator

Energy to gather 1024 bits:
~3 ud per bit
~ 10x more energy per bit than a ZigBee radio,
amortized over all CSPRNG outputs

Conclusions

« You should worry about your random numbers!

o A CSPRNG can generate secure, effectively
limitless output given a hard-to-guess key. ..

o ...but in embedded systems, generating
a CSPRNG key is challenging

« We have presented a design tailored to embedded
systems for secure, inexpensive pseudorandomness

« Future work: smaller, cheaper, faster

https://github.com/helena-project/imix

https://github.com/helena-project/imix

Vnoise,l

Comparator
33V

= Vout

Boost converter

3.3
Vhigh R3 Vnoise,Z

T v 10kQ

out
€N = enable

il

