
BLS signatures, hashing to curves, and more:
Dispatches from the IETF

Riad S. Wahby, Dan Boneh

Stanford

August 18th, 2019

People

• BLS signatures authors:
Sergey Gorbunov, Hoeteck Wee, Zhenfei Zhang

• Hash-to-curve authors:
Armando Faz-Hernández, Sam Scott, Nick Sullivan, Chris Wood

• Folks whose feedback has been crucial:

Björn Haase, Dan Harkins, Leo Reyzin,

Michael Scott, Shoko Yonezawa

Why standardize? +philosophyε

The obvious one: interoperability

But also: efficiency, security

Invalid curve attack [BMM00]

Mallory Bob
P of order ` secret β ∈ Zq

(on the wrong curve!)

P

Q = Pβ

Q

Extract β mod `

Practice “polite crypto” [EWD1300]

Ô Do the careful thinking up front
so that your users don’t have to!

A forcing function for pragmatism

Ô Users will ignore bad or confusing standards

. . .

. . . so make choices (but only the good ones)

Why standardize? +philosophyε

The obvious one: interoperability

But also: efficiency, security

Invalid curve attack [BMM00]

Mallory Bob
P of order ` secret β ∈ Zq

(on the wrong curve!)

P

Q = Pβ

Q

Extract β mod `

Practice “polite crypto” [EWD1300]

Ô Do the careful thinking up front
so that your users don’t have to!

A forcing function for pragmatism

Ô Users will ignore bad or confusing standards

. . .

. . . so make choices (but only the good ones)

Why standardize? +philosophyε

The obvious one: interoperability

But also: efficiency, securityInvalid curve attack [BMM00]

Mallory Bob
P of order ` secret β ∈ Zq

(on the wrong curve!)

P

Q = Pβ

Q

Extract β mod `

Practice “polite crypto” [EWD1300]

Ô Do the careful thinking up front
so that your users don’t have to!

A forcing function for pragmatism

Ô Users will ignore bad or confusing standards

. . .

. . . so make choices (but only the good ones)

Why standardize? +philosophyε

The obvious one: interoperability

But also: efficiency, security

Invalid curve attack [BMM00]

Mallory Bob
P of order ` secret β ∈ Zq

(on the wrong curve!)

P

Q = Pβ

Q

Extract β mod `

Practice “polite crypto” [EWD1300]

Ô Do the careful thinking up front
so that your users don’t have to!

A forcing function for pragmatism

Ô Users will ignore bad or confusing standards

. . .

. . . so make choices (but only the good ones)

Why standardize? +philosophyε

The obvious one: interoperability

But also: efficiency, security

Invalid curve attack [BMM00]

Mallory Bob
P of order ` secret β ∈ Zq

(on the wrong curve!)

P

Q = Pβ

Q

Extract β mod `

Practice “polite crypto” [EWD1300]

Ô Do the careful thinking up front
so that your users don’t have to!

A forcing function for pragmatism

Ô Users will ignore bad or confusing standards. . .

. . . so make choices (but only the good ones)

1. Standardizing advanced crypto with the IETF

2. BLS signatures, hash-to-curve, and more

Standardizing advanced crypto with the IETF: the CFRG

Internet Engineering Task Force
“We believe in rough consensus and running code.”

Crypto Forum Research Group
“serves as a bridge between theory and practice, bringing
new cryptographic techniques to the Internet community”

CFRG publishes “Informational” RFCs

Ô can be incorporated by “Standards Track” RFCs,
e.g., TLS 1.3 incorporates the curve25519 RFC

CFRG has an active mailing list, too!

Ô https://irtf.org/cfrg

Standardizing advanced crypto with the IETF: the CFRG

Internet Engineering Task Force
“We believe in rough consensus and running code.”

Crypto Forum Research Group
“serves as a bridge between theory and practice, bringing
new cryptographic techniques to the Internet community”

CFRG publishes “Informational” RFCs

Ô can be incorporated by “Standards Track” RFCs,
e.g., TLS 1.3 incorporates the curve25519 RFC

CFRG has an active mailing list, too!

Ô https://irtf.org/cfrg

Standardizing advanced crypto with the IETF: the CFRG

Internet Engineering Task Force
“We believe in rough consensus and running code.”

Crypto Forum Research Group
“serves as a bridge between theory and practice, bringing
new cryptographic techniques to the Internet community”

CFRG publishes “Informational” RFCs

Ô can be incorporated by “Standards Track” RFCs,
e.g., TLS 1.3 incorporates the curve25519 RFC

CFRG has an active mailing list, too!

Ô https://irtf.org/cfrg

Standardizing advanced crypto with the IETF: the CFRG

Internet Engineering Task Force
“We believe in rough consensus and running code.”

Crypto Forum Research Group
“serves as a bridge between theory and practice, bringing
new cryptographic techniques to the Internet community”

CFRG publishes “Informational” RFCs

Ô can be incorporated by “Standards Track” RFCs,
e.g., TLS 1.3 incorporates the curve25519 RFC

CFRG has an active mailing list, too!

Ô https://irtf.org/cfrg

CFRG standardization process—theory

Per [RFC5743]:

1. CFRG prepares a new “internet draft”

technical vetting—correctness

2. IRTF reviews it

editorial vetting—clarity

3. IESG reviews it

“political” vetting—is CFRG the right group?

4. RFC Editor prepares and publishes it

fine-toothed combing

CFRG standardization process—theory

Per [RFC5743]:

1. CFRG prepares a new “internet draft”
technical vetting—correctness

2. IRTF reviews it

editorial vetting—clarity

3. IESG reviews it

“political” vetting—is CFRG the right group?

4. RFC Editor prepares and publishes it

fine-toothed combing

CFRG standardization process—theory

Per [RFC5743]:

1. CFRG prepares a new “internet draft”
technical vetting—correctness

2. IRTF reviews it
editorial vetting—clarity

3. IESG reviews it

“political” vetting—is CFRG the right group?

4. RFC Editor prepares and publishes it

fine-toothed combing

CFRG standardization process—theory

Per [RFC5743]:

1. CFRG prepares a new “internet draft”
technical vetting—correctness

2. IRTF reviews it
editorial vetting—clarity

3. IESG reviews it
“political” vetting—is CFRG the right group?

4. RFC Editor prepares and publishes it

fine-toothed combing

CFRG standardization process—theory

Per [RFC5743]:

1. CFRG prepares a new “internet draft”
technical vetting—correctness

2. IRTF reviews it
editorial vetting—clarity

3. IESG reviews it
“political” vetting—is CFRG the right group?

4. RFC Editor prepares and publishes it
fine-toothed combing

CFRG standardization process—practice

1. Build consensus: the world needs this protocol
• stakeholders: the community at large (plus CFRG)

2. Write an “individual draft”
• solicit feedback from stakeholders
• https://github.com/ietf-gitwg/using-github

3. CFRG call for adoption
• vote on CFRG mailing list: should this group work on this

document? who will read and give feedback?

4. edit, implement, present updates at IETF meetings

5. CFRG last call (for objections, comments, etc.)

6. hand off document to IRTF, etc.

CFRG standardization process—practice

1. Build consensus: the world needs this protocol
• stakeholders: the community at large (plus CFRG)

2. Write an “individual draft”
• solicit feedback from stakeholders
• https://github.com/ietf-gitwg/using-github

3. CFRG call for adoption
• vote on CFRG mailing list: should this group work on this

document? who will read and give feedback?

4. edit, implement, present updates at IETF meetings

5. CFRG last call (for objections, comments, etc.)

6. hand off document to IRTF, etc.

CFRG standardization process—practice

1. Build consensus: the world needs this protocol
• stakeholders: the community at large (plus CFRG)

2. Write an “individual draft”
• solicit feedback from stakeholders
• https://github.com/ietf-gitwg/using-github

3. CFRG call for adoption
• vote on CFRG mailing list: should this group work on this

document? who will read and give feedback?

4. edit, implement, present updates at IETF meetings

5. CFRG last call (for objections, comments, etc.)

6. hand off document to IRTF, etc.

CFRG standardization process—practice

1. Build consensus: the world needs this protocol
• stakeholders: the community at large (plus CFRG)

2. Write an “individual draft”
• solicit feedback from stakeholders
• https://github.com/ietf-gitwg/using-github

3. CFRG call for adoption
• vote on CFRG mailing list: should this group work on this

document? who will read and give feedback?

4. edit, implement, present updates at IETF meetings

5. CFRG last call (for objections, comments, etc.)

6. hand off document to IRTF, etc.

CFRG standardization process—practice

1. Build consensus: the world needs this protocol
• stakeholders: the community at large (plus CFRG)

2. Write an “individual draft”
• solicit feedback from stakeholders
• https://github.com/ietf-gitwg/using-github

3. CFRG call for adoption
• vote on CFRG mailing list: should this group work on this

document? who will read and give feedback?

4. edit, implement, present updates at IETF meetings

5. CFRG last call (for objections, comments, etc.)

6. hand off document to IRTF, etc.

CFRG standardization process—practice

1. Build consensus: the world needs this protocol
• stakeholders: the community at large (plus CFRG)

2. Write an “individual draft”
• solicit feedback from stakeholders
• https://github.com/ietf-gitwg/using-github

3. CFRG call for adoption
• vote on CFRG mailing list: should this group work on this

document? who will read and give feedback?

4. edit, implement, present updates at IETF meetings

5. CFRG last call (for objections, comments, etc.)

6. hand off document to IRTF, etc.

CFRG standardization process—how long does it take?

Examples (from https://datatracker.ietf.org):

• curve25519/curve448 [RFC7748]: about 1 year
12 drafts in total
IRTF, IESG reviews took a few days each
RFC Editor queue took 3 months

• BLS signatures (WIP): 6 months so far
2 drafts so far

• Hash-to-curve (WIP): 17 months so far
5 drafts so far

CFRG standardization process—how long does it take?

Examples (from https://datatracker.ietf.org):

• curve25519/curve448 [RFC7748]: about 1 year
12 drafts in total
IRTF, IESG reviews took a few days each
RFC Editor queue took 3 months

• BLS signatures (WIP): 6 months so far
2 drafts so far

• Hash-to-curve (WIP): 17 months so far
5 drafts so far

What about patents?

There’s an RFC for that! [RFC8179]

If you own a patent, you must disclose it.

If you know of a patent, you should disclose it.

Ô IETF will ask rights holders for written assurance
that patents will be licensed to implementors.

IETF Security Area won’t specify “must-implement”
protocols that have royalty encumbrances.

Royalty-free “RAND-z” licenses are OK;
commitments not to assert patents are better;
unencumbered technologies are best.

Ô Don’t patent crypto.

What about patents?

There’s an RFC for that! [RFC8179]

If you own a patent, you must disclose it.

If you know of a patent, you should disclose it.

Ô IETF will ask rights holders for written assurance
that patents will be licensed to implementors.

IETF Security Area won’t specify “must-implement”
protocols that have royalty encumbrances.

Royalty-free “RAND-z” licenses are OK;
commitments not to assert patents are better;
unencumbered technologies are best.

Ô Don’t patent crypto.

What about patents?

There’s an RFC for that! [RFC8179]

If you own a patent, you must disclose it.

If you know of a patent, you should disclose it.

Ô IETF will ask rights holders for written assurance
that patents will be licensed to implementors.

IETF Security Area won’t specify “must-implement”
protocols that have royalty encumbrances.

Royalty-free “RAND-z” licenses are OK;
commitments not to assert patents are better;
unencumbered technologies are best.

Ô Don’t patent crypto.

What about patents?

There’s an RFC for that! [RFC8179]

If you own a patent, you must disclose it.

If you know of a patent, you should disclose it.

Ô IETF will ask rights holders for written assurance
that patents will be licensed to implementors.

IETF Security Area won’t specify “must-implement”
protocols that have royalty encumbrances.

Royalty-free “RAND-z” licenses are OK;
commitments not to assert patents are better;
unencumbered technologies are best.

Ô Don’t patent crypto.

What about patents?

There’s an RFC for that! [RFC8179]

If you own a patent, you must disclose it.

If you know of a patent, you should disclose it.

Ô IETF will ask rights holders for written assurance
that patents will be licensed to implementors.

IETF Security Area won’t specify “must-implement”
protocols that have royalty encumbrances.

Royalty-free “RAND-z” licenses are OK;
commitments not to assert patents are better;
unencumbered technologies are best.

Ô Don’t patent crypto.

1. Standardizing advanced crypto with the IETF

2. BLS signatures, hash-to-curve, and more

BLS sigs

pairing-friendly
curves

hash-to-curve

VRFs

VOPRFs

BLS sigs

pairing-friendly
curves

hash-to-curve

VRFs

VOPRFs

BLS sigs

pairing-friendly
curves

hash-to-curve

VRFs

VOPRFs

BLS sigs

pairing-friendly
curves

hash-to-curve

VRFs

VOPRFs

BLS sigs

pairing-friendly
curves

hash-to-curve

VRFs

VOPRFs

Pairing-friendly elliptic curves

A pairing-friendly elliptic curve defines:

• G1 ⊆ E1(F1) and G2 ⊆ E2(F2) of prime order q
generated by P1 and P2, respectively

• GT of prime order q

• e : G1 ×G2 → GT , a bilinear map:

e(Pα
1 ,Pβ

2) = e(P1,P2)α·β α, β ∈ Zq

Ô What else might the spec cover?

• serialization / deserialization

• fast subgroup checks [Bowe19]

• test vectors

Pairing-friendly elliptic curves

A pairing-friendly elliptic curve defines:

• G1 ⊆ E1(F1) and G2 ⊆ E2(F2) of prime order q
generated by P1 and P2, respectively

• GT of prime order q

• e : G1 ×G2 → GT , a bilinear map:

e(Pα
1 ,Pβ

2) = e(P1,P2)α·β α, β ∈ Zq

Ô What else might the spec cover?

• serialization / deserialization

• fast subgroup checks [Bowe19]

• test vectors

Pairing-friendly elliptic curves

A pairing-friendly elliptic curve defines:

• G1 ⊆ E1(F1) and G2 ⊆ E2(F2) of prime order q
generated by P1 and P2, respectively

• GT of prime order q

• e : G1 ×G2 → GT , a bilinear map:

e(Pα
1 ,Pβ

2) = e(P1,P2)α·β α, β ∈ Zq

Ô What else might the spec cover?

• serialization / deserialization

• fast subgroup checks [Bowe19]

• test vectors

Pairing-friendly elliptic curves

A pairing-friendly elliptic curve defines:

• G1 ⊆ E1(F1) and G2 ⊆ E2(F2) of prime order q
generated by P1 and P2, respectively

• GT of prime order q

• e : G1 ×G2 → GT , a bilinear map:

e(Pα
1 ,Pβ

2) = e(P1,P2)α·β α, β ∈ Zq

Ô What else might the spec cover?

• serialization / deserialization

• fast subgroup checks [Bowe19]

• test vectors

Pairing-friendly elliptic curves

A pairing-friendly elliptic curve defines:

• G1 ⊆ E1(F1) and G2 ⊆ E2(F2) of prime order q
generated by P1 and P2, respectively

• GT of prime order q

• e : G1 ×G2 → GT , a bilinear map:

e(Pα
1 ,Pβ

2) = e(P1,P2)α·β α, β ∈ Zq

Ô What else might the spec cover?

• serialization / deserialization

• fast subgroup checks [Bowe19]

• test vectors

Pairing-friendly elliptic curves

A pairing-friendly elliptic curve defines:

• G1 ⊆ E1(F1) and G2 ⊆ E2(F2) of prime order q
generated by P1 and P2, respectively

• GT of prime order q

• e : G1 ×G2 → GT , a bilinear map:

e(Pα
1 ,Pβ

2) = e(P1,P2)α·β α, β ∈ Zq

Ô What else might the spec cover?

• serialization / deserialization

• fast subgroup checks [Bowe19]

• test vectors

Hashing to elliptic curves (in constant time)

HashToFieldi : {0, 1}? → F
a family of independent ROs indexed by i

MapToCurve : F→ E (F)
[SvdW06,U07,Ica09,BCIMRT10,BHKL13,WB19]

ClearCofactor : E (F)→ G
[SBCDK09,FKR11,BP18]

H(msg)→ G [BCIMRT10,FFSTV13]
Q1 = MapToCurve(HashToField1(msg))
Q2 = MapToCurve(HashToField2(msg))
output ClearCofactor(Q1 · Q2)

is indifferentiable from a random oracle to G

How to implement domain separation?

7

Hash(i ||DST ||msg)

Ô Broken if anyone chooses an empty DST!

7

HMAC(i ||DST, msg)

Ô Requires re-hashing msg for each i .

3 Use HKDF [RFC5869]:

1. prk = HMAC(DST, msg)
2. output HMAC(prk, i)

Hashing to elliptic curves (in constant time)

HashToFieldi : {0, 1}? → F
a family of independent ROs indexed by i

MapToCurve : F→ E (F)
[SvdW06,U07,Ica09,BCIMRT10,BHKL13,WB19]

ClearCofactor : E (F)→ G
[SBCDK09,FKR11,BP18]

H(msg)→ G [BCIMRT10,FFSTV13]
Q1 = MapToCurve(HashToField1(msg))
Q2 = MapToCurve(HashToField2(msg))
output ClearCofactor(Q1 · Q2)

is indifferentiable from a random oracle to G

How to implement domain separation?

7

Hash(i ||DST ||msg)

Ô Broken if anyone chooses an empty DST!

7

HMAC(i ||DST, msg)

Ô Requires re-hashing msg for each i .

3 Use HKDF [RFC5869]:

1. prk = HMAC(DST, msg)
2. output HMAC(prk, i)

Hashing to elliptic curves (in constant time)

HashToFieldi : {0, 1}? → F
a family of independent ROs indexed by i

MapToCurve : F→ E (F)
[SvdW06,U07,Ica09,BCIMRT10,BHKL13,WB19]

ClearCofactor : E (F)→ G
[SBCDK09,FKR11,BP18]

H(msg)→ G [BCIMRT10,FFSTV13]
Q1 = MapToCurve(HashToField1(msg))
Q2 = MapToCurve(HashToField2(msg))
output ClearCofactor(Q1 · Q2)

is indifferentiable from a random oracle to G

How to implement domain separation?

7

Hash(i ||DST ||msg)

Ô Broken if anyone chooses an empty DST!

7

HMAC(i ||DST, msg)

Ô Requires re-hashing msg for each i .

3 Use HKDF [RFC5869]:

1. prk = HMAC(DST, msg)
2. output HMAC(prk, i)

Hashing to elliptic curves (in constant time)

HashToFieldi : {0, 1}? → F
a family of independent ROs indexed by i

MapToCurve : F→ E (F)
[SvdW06,U07,Ica09,BCIMRT10,BHKL13,WB19]

ClearCofactor : E (F)→ G
[SBCDK09,FKR11,BP18]

H(msg)→ G [BCIMRT10,FFSTV13]
Q1 = MapToCurve(HashToField1(msg))
Q2 = MapToCurve(HashToField2(msg))
output ClearCofactor(Q1 · Q2)

is indifferentiable from a random oracle to G

How to implement domain separation?

7

Hash(i ||DST ||msg)

Ô Broken if anyone chooses an empty DST!

7

HMAC(i ||DST, msg)

Ô Requires re-hashing msg for each i .

3 Use HKDF [RFC5869]:

1. prk = HMAC(DST, msg)
2. output HMAC(prk, i)

Hashing to elliptic curves (in constant time)

HashToFieldi : {0, 1}? → F
a family of independent ROs indexed by i

MapToCurve : F→ E (F)
[SvdW06,U07,Ica09,BCIMRT10,BHKL13,WB19]

ClearCofactor : E (F)→ G
[SBCDK09,FKR11,BP18]

H(msg)→ G [BCIMRT10,FFSTV13]
Q1 = MapToCurve(HashToField1(msg))
Q2 = MapToCurve(HashToField2(msg))
output ClearCofactor(Q1 · Q2)

is indifferentiable from a random oracle to G

How to implement domain separation?

7

Hash(i ||DST ||msg)

Ô Broken if anyone chooses an empty DST!

7

HMAC(i ||DST, msg)

Ô Requires re-hashing msg for each i .

3 Use HKDF [RFC5869]:

1. prk = HMAC(DST, msg)
2. output HMAC(prk, i)

BLS signatures [BLS01]

KeyGen()→ (pk , sk): x ←R Zq; output (P
x
2 , x).

Sign(sk , msg)→ sig: output H(msg)sk ∈ G1.

Verify(pk , msg, sig)→ {OK,⊥}:
if e(H(msg), pk) = e(sig,P2), output OK,
else output ⊥.

e(H(msg),Px
2) = e(H(msg)x ,P2)

BLS signatures [BLS01]

KeyGen()→ (pk , sk): x ←R Zq; output (P
x
2 , x).

Sign(sk , msg)→ sig: output H(msg)sk ∈ G1.

Verify(pk , msg, sig)→ {OK,⊥}:
if e(H(msg), pk) = e(sig,P2), output OK,
else output ⊥.

e(H(msg),Px
2) = e(H(msg)x ,P2)

BLS signatures [BLS01]

KeyGen()→ (pk , sk): x ←R Zq; output (P
x
2 , x).

Sign(sk , msg)→ sig: output H(msg)sk ∈ G1.

Verify(pk , msg, sig)→ {OK,⊥}:
if e(H(msg), pk) = e(sig,P2), output OK,
else output ⊥.

e(H(msg),Px
2) = e(H(msg)x ,P2)

BLS signatures [BLS01]

KeyGen()→ (pk , sk): x ←R Zq; output (P
x
2 , x).

Sign(sk , msg)→ sig: output H(msg)sk ∈ G1.

Verify(pk , msg, sig)→ {OK,⊥}:
if e(H(msg), pk) = e(sig,P2), output OK,
else output ⊥.

e(H(msg),Px
2) = e(H(msg)x ,P2)

BLS signatures [BLS01]

KeyGen()→ (pk , sk): x ←R Zq; output (P
x
2 , x).

Sign(sk , msg)→ sig: output H(msg)sk ∈ G1.

Verify(pk , msg, sig)→ {OK,⊥}:
if e(H(msg), pk) = e(sig,P2), output OK,
else output ⊥.

e(H(msg),Px
2) = e(H(msg)x ,P2)

BLS signatures [BLS01]

KeyGen()→ (pk , sk): x ←R Zq; output (P
x
2 , x).

Sign(sk , msg)→ sig: output H(msg)sk ∈ G1.

Verify(pk , msg, sig)→ {OK,⊥}:
if e(H(msg), pk) = e(sig,P2), output OK,
else output ⊥.

e(H(msg),Px
2) = e(H(msg)x ,P2)

BLS signature aggregation [BGLS03]

Aggregate(sig1, ... , sign)→ sig:
output

∏
i sigi ∈ G1.

VerMulti(pk1, ... , pkn, msg, sig)→ {OK,⊥}:
if e(H(msg),

∏
i pki) = e(sig,P2), output OK,

else output ⊥.

VerBatch(pk1, msg1, ... , pkn, msgn, sig)→ {OK,⊥}:
if
∏

i e(H(msgi), pki) = e(sig,P2), output OK,
else output ⊥.

BLS signature aggregation [BGLS03]

Aggregate(sig1, ... , sign)→ sig:
output

∏
i sigi ∈ G1.

VerMulti(pk1, ... , pkn, msg, sig)→ {OK,⊥}:
if e(H(msg),

∏
i pki) = e(sig,P2), output OK,

else output ⊥.

VerBatch(pk1, msg1, ... , pkn, msgn, sig)→ {OK,⊥}:
if
∏

i e(H(msgi), pki) = e(sig,P2), output OK,
else output ⊥.

BLS signature aggregation [BGLS03]

Aggregate(sig1, ... , sign)→ sig:
output

∏
i sigi ∈ G1.

VerMulti(pk1, ... , pkn, msg, sig)→ {OK,⊥}:
if e(H(msg),

∏
i pki) = e(sig,P2), output OK,

else output ⊥.

VerBatch(pk1, msg1, ... , pkn, msgn, sig)→ {OK,⊥}:
if
∏

i e(H(msgi), pki) = e(sig,P2), output OK,
else output ⊥.

BLS signature aggregation [BGLS03]

Aggregate(sig1, ... , sign)→ sig:
output

∏
i sigi ∈ G1.

VerMulti(pk1, ... , pkn, msg, sig)→ {OK,⊥}:
if e(H(msg),

∏
i pki) = e(sig,P2), output OK,

else output ⊥.

VerBatch(pk1, msg1, ... , pkn, msgn, sig)→ {OK,⊥}:
if
∏

i e(H(msgi), pki) = e(sig,P2), output OK,
else output ⊥.

Rogue key attack

Let’s say Alice has pka and Bob has pkb.

Mallory samples x ←R Zq and computes

pkm = Px
2 · (pka · pkb)−1

Since
∏

pki = Px
2 , Mallory can forge

a multi-signature for any msg:

e(H(msg),
∏

pki) = e(H(msg)x ,P2)

Rogue key attack

Let’s say Alice has pka and Bob has pkb.

Mallory samples x ←R Zq and computes

pkm = Px
2 · (pka · pkb)−1

Since
∏

pki = Px
2 , Mallory can forge

a multi-signature for any msg:

e(H(msg),
∏

pki) = e(H(msg)x ,P2)

Defending against rogue keys

Require unique messages [BGLS03]:
But: no fast multi-sig verification.

Message augmentation [BGLS03,BNN07]:
Sign pk ||msg, ensuring uniqueness
(so: no fast multi-sig verification).

Proof of possession [Bol03,LOSSW06,RY07]:
Require key owners to furnish Sign(sk , pk)
(gives fast multi-sig verification).

Random linear combination [BDN18]:
Check e(H(msgi),

∏
i pk

αi

i) =? e(
∏

i sigαi

i ,P2)
for pseudorandomly-generated αi .

Defending against rogue keys

Require unique messages [BGLS03]:
But: no fast multi-sig verification.

Message augmentation [BGLS03,BNN07]:
Sign pk ||msg, ensuring uniqueness
(so: no fast multi-sig verification).

Proof of possession [Bol03,LOSSW06,RY07]:
Require key owners to furnish Sign(sk , pk)
(gives fast multi-sig verification).

Random linear combination [BDN18]:
Check e(H(msgi),

∏
i pk

αi

i) =? e(
∏

i sigαi

i ,P2)
for pseudorandomly-generated αi .

Defending against rogue keys

Require unique messages [BGLS03]:
But: no fast multi-sig verification.

Message augmentation [BGLS03,BNN07]:
Sign pk ||msg, ensuring uniqueness
(so: no fast multi-sig verification).

Proof of possession [Bol03,LOSSW06,RY07]:
Require key owners to furnish Sign(sk , pk)
(gives fast multi-sig verification).

Random linear combination [BDN18]:
Check e(H(msgi),

∏
i pk

αi

i) =? e(
∏

i sigαi

i ,P2)
for pseudorandomly-generated αi .

Defending against rogue keys

Require unique messages [BGLS03]:
But: no fast multi-sig verification.

Message augmentation [BGLS03,BNN07]:
Sign pk ||msg, ensuring uniqueness
(so: no fast multi-sig verification).

Proof of possession [Bol03,LOSSW06,RY07]:
Require key owners to furnish Sign(sk , pk)
(gives fast multi-sig verification).

Random linear combination [BDN18]:
Check e(H(msgi),

∏
i pk

αi

i) =? e(
∏

i sigαi

i ,P2)
for pseudorandomly-generated αi .

Defending against rogue keys

Require unique messages [BGLS03]:
But: no fast multi-sig verification.

Message augmentation [BGLS03,BNN07]:
Sign pk ||msg, ensuring uniqueness
(so: no fast multi-sig verification).

Proof of possession [Bol03,LOSSW06,RY07]:
Require key owners to furnish Sign(sk , pk)
(gives fast multi-sig verification).

Random linear combination [BDN18]:
Check e(H(msgi),

∏
i pk

αi

i) =? e(
∏

i sigαi

i ,P2)
for pseudorandomly-generated αi .

Lessons learned (so far)

3 Make things hard to break, but
add firewalls for when they do.

3 Implement, implement, implement:
that’s what the standard is for!

3 You can’t make everyone happy
(but don’t take it personally).

3 The IETF is a great place for new crypto!

https://github.com/cfrg/draft-irtf-cfrg-bls-signature
https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve
https://bls-hash.crypto.fyi

Lessons learned (so far)

3 Make things hard to break, but
add firewalls for when they do.

3 Implement, implement, implement:
that’s what the standard is for!

3 You can’t make everyone happy
(but don’t take it personally).

3 The IETF is a great place for new crypto!

https://github.com/cfrg/draft-irtf-cfrg-bls-signature
https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve
https://bls-hash.crypto.fyi

Lessons learned (so far)

3 Make things hard to break, but
add firewalls for when they do.

3 Implement, implement, implement:
that’s what the standard is for!

3 You can’t make everyone happy
(but don’t take it personally).

3 The IETF is a great place for new crypto!

https://github.com/cfrg/draft-irtf-cfrg-bls-signature
https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve
https://bls-hash.crypto.fyi

Lessons learned (so far)

3 Make things hard to break, but
add firewalls for when they do.

3 Implement, implement, implement:
that’s what the standard is for!

3 You can’t make everyone happy
(but don’t take it personally).

3 The IETF is a great place for new crypto!

https://github.com/cfrg/draft-irtf-cfrg-bls-signature
https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve
https://bls-hash.crypto.fyi

Lessons learned (so far)

3 Make things hard to break, but
add firewalls for when they do.

3 Implement, implement, implement:
that’s what the standard is for!

3 You can’t make everyone happy
(but don’t take it personally).

3 The IETF is a great place for new crypto!

https://github.com/cfrg/draft-irtf-cfrg-bls-signature
https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve
https://bls-hash.crypto.fyi

